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• More generally: evaluate implementations with IT 

metrics, evaluate adversaries with security metrics 
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• But estimating the mutual information between 

arbitrary distributions is notoriously hard! 

 

• Good news: side-channel attacks need a model 

• i.e. an estimation of the leakage distribution 

 

• Main idea: estimate the mutual information from 

the “best available” profiled model (i.e. worst case) 
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• Information leakage on the secret key 

 

 

 

 

• where Pr 
𝑚𝑜𝑑𝑒𝑙  [𝑘|𝑙] is obtained by profiling 

• and Pr𝑐ℎ𝑖𝑝 𝑙 𝑘  is obtained by sampling  

H 𝐾 −  Pr 𝑘  Pr𝑐ℎ𝑖𝑝 𝑙 𝑘

𝑙𝑘

 . log2 Pr 
𝑚𝑜𝑑𝑒𝑙  [𝑘|𝑙] 
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• Step 2: estimate the information leakage by 

sampling Pr𝑐ℎ𝑖𝑝 𝑙 𝑘  (i.e. perform measurements) 

 

 

• Note: measurements to estimate the leakage model 

and the IT metric must be independent! 
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• Case #2 (actual): bounded profiling phase 

• i. e.  Pr 
𝑚𝑜𝑑𝑒𝑙  𝑘 𝑙  ≠ Pr𝑐ℎ𝑖𝑝 𝑙 𝑘   
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• PI(K;L) is directly proportional to the success rate 

of an adversary using Pr 
𝑚𝑜𝑑𝑒𝑙  𝑘 𝑙  as template 

• e.g. PI(K;L) in function of the noise variance 
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• Countermeasure #1 more secure than second one 
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• PI(K;L) is the evaluator’s best estimate 
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• Theorem only proven in very specific cases 

• But holds surprisingly well in real-world settings 
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• If “perfect” implementation, the data complexity to 

break masking is proportional to (𝜎𝑛
2)𝑟 

• Perfect ≈ if the smallest-order key-dependent 

moment in the leakage distribution is r 

• Essentially depends on the hardware (e.g. 

glitches may make the implementation imperfect) 
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• Flaws due to physical defaults can be detected 
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• Implies to select good statistical tools 

• Critical point: PDF estimation problem 

 

• Tools are highly dependent on the contexts 

• So is the distance between MI and PI (and 

hence, the relevance of security evaluations) 

 

• A few examples next… 
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• Different implementations and countermeasures 

• Which cases are “easy to evaluate”? 
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• Most distinguishers are asymtotically equivalent [4] 

• … if provided with the same leakage model 
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• PCA, LDA, … useful in the profiled case [5]  

• Dimension reduction uneasy in non-profiled case 
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• Same tools as for unprotected devices work well 

• Non-linear leakage functions require profiling [6] 
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• Uneasy to evaluate for both type of attacks 

• Signal proc. can cancel countermeasures [7,8] 
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• Becomes measurement intensive as r increases 

• No solution is always optimal in non-profiled case 
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• Specially hard if the design is unknown 

• Large distance btw. profiled & non-profiled cases 
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• PI(K;L) provide a unifying view of countermeasures 

• IT curves capture most intuition regarding the data 

complexity of worst case side-channel attacks 

 

 

• Evaluator’s goal: avoid “false sense of security”  

• PI(K;L) ≠ MI(K;L) 

• Significant differences may arise due to signal 

processing, bad assumptions on the leakage, … 

• Measurement setup also matters! 
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• Difficult since the leakage function is unknown  

=> Impossible to compute this distance directly! 

 

 

• Next: we show that indirect approaches allow 

answering the question quite rigorously 

 

• Main idea: quantify estimation & assumption errors 
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• Split traces in 10 (non-overlapping) sets, use 

9/10th for profiling, 1/10th for estimating the PI 

• Repeat 10 times to get average & spread 
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• And test their CvM divergence 
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CvM  (𝑓𝑠𝑖𝑚,𝑔 𝑁) =  𝑓𝑠𝑖𝑚 𝑥 − 𝑔 𝑁 𝑥 ²𝑑𝑥 
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• Any incorrect assumption => CvM saturates 
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• Estimation errors can be made arbitrarily small by 
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• Idea: try to detect when (i.e. for which # of traces 

in the cross-validation set) assumption errors 

become significant in front of estimation ones 
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• Characterize the probability that a given 

divergence between 𝑓𝑠𝑖𝑚 and 𝑓 𝑠𝑖𝑚,𝑁 would be 

observed for a given number of traces N 

 

• Look whether a given divergence between 𝑓𝑠𝑖𝑚 

and 𝑔 𝑁 (the latter obtained during cross-validation 

again) can be due to estimation errors   
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CvM  (𝑓𝑠𝑖𝑚,𝑔 𝑁)  
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    Gaussian templates       Stochastic model 
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• Assume estimation errors are “small enough” 

• Which is easily obtained with enough meas. 

 

• Conjecture: For N such that the assumption 

errors are “not significant” in front of estimation 

errors, we can “bound” the information loss by 

quantifying the estimation error 

• (i.e. assumption errors that are detected for 

smaller N’s are inevitably larger) 
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• Identified template attack with PI = 0.58 

• No assumption errors for N=1000 

• Estimation error ~ 0.11 at this point 

=> With “low” confidence, no attack exist with PI>0.69 

=> With “high” confidence, no attack exist with PI>0.80 
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• Identified stochastic attack with PI = 0.38 

• Assumption errors for N=100 

• Estimation error ~ 0.29 at this point 

=> With “low” confidence, no attack exist with PI>0.67 

=> With “high” confidence, no attack exist with PI>0.96 
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• No! (in fact there exist counterexamples) 

• … but just as the PI <=> success rate connection 
 

• What can go wrong? 
• Heuristic optimization-based PDF estimation 

• (but seems OK with Gaussian templates and 

regression-based stochastic models) 

• Very low noise levels (non-Gaussian PI estimates) 

• (but corresponds to less relevant scenarios) 
 

• Good news: can be tested in simulations (since we 

know the true MI values in these cases!) 
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• Note: previous discussion mainly relates to the 

data complexity of side-channel attacks 

• Time/memory complexity also matters 

 

 

• In the context of “standard DPA”, the exploitation 

of computation is typically reflected by: 

• Key enumeration 

• Rank estimation 
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• Significant impact on the success rates! 

• Very efficient attack tool (e.g. DPA contest) 
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• Missing data can always be traded for computations 
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• Evaluator’s counterpart to key enumeration (the key 

must be known!) leading to complete security graphs 
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Main message: 

• Possibility to “bound” the information leakage 

• i.e. to know how far actual security evaluations 

computing the PI are from the true (unknown) MI 

• Next: find meaningful examples/counterexamples 

 

Cautionary note: 

• Fair evaluations must consider both data and time 

• i.e. enumeration and rank estimation for DPA 

• But also algebraic side-channel attacks [11]   
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