DEFENDING WORLD SECURITY

A New Proposal for Lightweight Cryptography: LILLIPUT Julien FRANCQ

July 1st 2014

AN EADS COMPANY

A New Proposal for Lightweight Cryptography: LILLIPUT Julien FRANCQ

July 1st 2014

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussions

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Introduction

Identification vs. Authentication RFID Constraints

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussion

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussion

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

RFID for Authentication

- Identification: only provides an identity (UID)
 - Logistic for non-safety critical products
 - Cheap
- Authentication: provides an identity and a proof
 - Access control, payment, ePassports, *etc*.
 - Cryptography (Challenge-Response Protocol (CRP))
 - More expensive

Simple CRP Examples

Unilateral authentication

$$\begin{array}{ll} \operatorname{Reader} \to \operatorname{Tag} & C\\ \operatorname{Reader} \leftarrow \operatorname{Tag} & R = {\color{black}{E}}_{{\color{black}{\mathcal{K}}}}(C)\\ \operatorname{Reader} \to \operatorname{Tag} & C' = D_{{\color{black}{\mathcal{K}}}}(R), \text{ if } C' = C \text{ then accept Tag} \end{array}$$

Bilateral authentication

$$\begin{array}{ll} \mathsf{Reader} \to \mathsf{Tag} & \mathcal{C}_r \\ \mathsf{Reader} \leftarrow \mathsf{Tag} & \mathcal{R}_t = \mathbf{E}_{\mathcal{K}}(\mathcal{C}_t, \mathcal{C}_r) \\ \mathsf{Reader} \to \mathsf{Tag} & \mathcal{R}_r = \mathbf{E}_{\mathcal{K}}(\mathcal{C}_r, \mathcal{C}_t) \end{array}$$

ISO 9798 : "Entity Authentication – Mechanisms using..."

■ -2 : "...symmetric encipherment algorithms",

■ -3 : "…*digital signatures*",

■ -4 : "...cryptographic check function" A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Introduction

Identification vs. Authentication RFID Constraints

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussion

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Metrics for Comparison

Metrics

- Power consumption
- Area
- Computation time

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

(Dynamic) Power Consumption

 $P_{\rm dyn}=C_L.V_{dd}^2.f.N$

- Low supply voltage $V_{dd} < 1V$
- Low clock frequency $f = k \times 100 \ kHz$
- Low $C_L \Rightarrow$ Low gate count
- Low switching activity (N)
- P. Kitsos and Y. Zhang. "RFID Security Techniques, Protocols and System-on-Chip Design". Springer, ISBN : 978-0-387-76480-1, p. 387.

Available Power Budget for Crypto

- 2 kinds of RFID tags:
 - Actively powered (battery)
 - Passively powered (reader)
- Harsh contraints on the power consumption (power, energy)

RFID System	Range	P_{avg}	l _{avg}
HF (13.56 MHz)	1 m	22.5 μ W	15 μ A ($V_{dd}=1.5$ V)
UHF (900 MHz)	5 m	4 μW	4 μ A (V_{dd} = 1 V)

- Crypto. on UHF systems is much harder to realize than on HF systems
- [2] P. Kitsos and Y. Zhang. "RFID Security Techniques, Protocols and System-on-Chip Design". Springer,
- ISBN : 978-0-387-76480-1, Table 2 p. 384.

Gate Equivalents

- Area in μm^2 , dependent of the process technology
- $\blacksquare \Rightarrow Gate Equivalents, GE$
- 1 GE = Area of a NAND2 gate
- Nb. of GEs = Area $(\mu m^2)/A$ rea of a NAND2
- Nb. of GE nearly independant of the technology ⇒ Ease comparisons
- Ex. : UMCL18G212T3

Gate	NOT	NAND	NOR	AND	OR	XOR	MUX	FF
GE	0.67	1	1	1.33	1.33	2.67	2.33	5.33-12.33

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014 🚺

How much GEs for 5 Cents?

- \blacksquare 1-2 cents/5 for an overall circuit in CMOS 0.35 μm
- 4 cents/mm²
- If half of the *layout* is related to the crypto $\Rightarrow 0.125-0.25 \text{ mm}^2$
- \blacksquare \Rightarrow 2000-4000 GEs for the crypto
- Old estimation, but still considered today as a valid upper bound

[3] S. E. Sarma. "Towards the 5 Cents Tag". Technical Report MIT-AUTOID-WH-006. MIT, Auto-ID Center, 2001.

Computation Time

- Time for anti-collision standardized
 - \bullet ISO/IEC 14443-3,4, 15693, 18000: \sim 10-100 μs (anti-collision)
- Acceptable response time for ISO/IEC 14443-4: 100 ms max.
- Generally accepted: 1000 clock cycles at 100 kHz

Adaptation to the Contraints of RFID

Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussion

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Adaptation to the Contraints of RFID Design Decision: Security

Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussions

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Security Level Adapted to RFID

- Applications require moderate level of security
- \Rightarrow 80 bits
 - Adapted to short-term security
- 5 cents RFID tags will have difficulties to fight in a long-term against very powerful attackers

Security Level Adapted to RFID

- Applications require moderate level of security
- \Rightarrow 80 bits
 - Adapted to short-term security
- 5 cents RFID tags will have difficulties to fight in a long-term against very powerful attackers

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014 😡

Adaptation to the Contraints of RFID

Design Decision: Security Reduce the Power Consumption

3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussions

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Generic Methods

Clock Gating

Parts of circuit are virtually switched off when they are not in use

Sleep Logic

Maintain constant inputs of useless outputs of combinatory parts

Serial architectures

- One part of a round is computed per clock cycle
- Datapath width: *n* bits $\rightarrow w = n/k$ bits
- Optimal: $w = \sqrt{n}$

Adaptation to the Contraints of RFID

Design Decision: Security Reduce the Power Consumption

3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussions

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Standard Approach

Implement standard algorithms whatever the cost

Standard Approach

Implement standard algorithms whatever the cost

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Dedicated Approach

Implement modified standard algorithms

Dedicated Approach

Implement modified standard algorithms

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Exotic Approach

Implement ad hoc algorithms

Exotic Approach

Implement ad hoc algorithms

Exotic Approach

Implement ad hoc algorithms

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag

Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussions

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach

Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussions

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

AES Module Architecture of [4]

- 8 bits architecture
- 3 components:
 - Controller (FSM): round execution, RAM addresses, control signals for the datapath
 - RAM (single port, flip-flops): 32 8-bit registers, *clock-gating* (only one byte clocked per clock cycle)
 - Datapath

[4] M. Feldhofer, S. Dominikus and J. Wolkerstorfer. "Strong Authentication for RFID Systems Using the

AES Algorithm". CHES 2004, pp. 357-370. A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Implementation Results

- 3503 GEs, 3.0 µA, 100 kHz, 1.5V
- 1044 clock cycles
- RAM: main area and power consumption cost
- $\blacksquare \Rightarrow \mathsf{Can} \mathsf{ fit in } \mathsf{RFID} \mathsf{ tags}$

Module/component	I _{mean}	Chip	Chip area	
	(µA at 100 kHz)	(%)	(GE)	(%)
RAM	1.55	51.7	2,065	58.9
S-box	0.4	13.3	345	9.8
MixColumns	0.25	8.3	350	10.0
Register	0.1	3.3	58	1.7
Adder	0.05	1.7	80	2.3
Controller (FSM)	0.55	18.3	490	14.0
Others	0.1	3.3	115	3.3
Total	3.0	100	3,503	100

Benefits of Low-Power (LP) CMOS

AES	GEs	Techno.	Area	Clock	V _{dd}	Freq. (kHz)	Pow. (μW)
		CMOS	(mm ²)	Cycles	(36 kbps)	(36 kbps)	(36 kbps)
[5]	3400	0.35 μm	0.25	1032	0.65	290	2.45
[6]	5500	0.13 μm	0.021	356	0.75	100	0.69
[7]	3500	65 nm LP	0.018	1142	0.36	322	0.25

[5] M. Feldhofer, J. Wolkerstorfer and V. Rijmen. "AES Implementation on a Grain of Sand". IEEE Proc. Inf. Secur. 152(1), 13–20, 2005.

[6] T. Good and M. Benaissa. "692 nW Advanced Encryption Standard (AES) on a 0,13 μ m". IEEE Transactions on VLSI Systems (99), 1 (2009).

[7] C. Hocquet, D. Kamel, F. Regazzoni, J.-D. Legat, D. Flandre, D. Bol and F.-X. Standaert. "Harvesting the potential of nano-CMOS for Lightweight Cryptography: an Ultra-Low-Voltage 65 nm AES Coprocessor for Passive RFID Tags". J. Cryptogr. Eng. (2011), 1, 79–86.

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag

Standard Approach

Dedicated Approach

Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussion

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

DES, DESX, DESL, DESXL

- DES designed with hardware efficiency in mind
- Block size: 64 bits, key size: 56 bits.
- Key length of DES limits its usefulness in many applications
- DESX proposed by Rivest : DESX_{k||k1||k2}(M) = $k_2 \oplus DES_k(k_1 \oplus M)$, 184 bits key, overhead: 14%
- DESXL (resp. DESL) derived from DESX (resp. DES) but has 2 modifications:
 - IP et IP⁻¹ are omitted
 - 8 SBoxes are replaced by only one, more lightweight, used 8 times
 - Greater resistance to differential/linear cryptanalysis than the original 8 SBoxes of DES

Datapath of a Serial DES

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014 🕥

Datapath of a Serial DESXL

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014 🕥

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag

Standard Approach Dedicated Approach

Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussions

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Confusion/Diffusion

- Block cipher: confusion + diffusion
- Confusion
 - Non-linear layer
 - S-Boxes
 - Similar SBoxes executed in parallel
 - In hardware realized as Boolean functions
 - Generally 4-bit SBoxes
- Diffusion
 - Linear layer
 - Bit permutation (not so good diffusion, but very cheap)
 - MDS codes (good diffusion, but costly)

Key Schedule

- On-the-fly round keys computation
- A fixed (hardwired) key allows:
 - to save a lot of GE,
 - avoid related-key attacks.
- Examples of lightweight *Key Schedules*:
 - KTANTAN: round-key-bits selected from the master-key
 - PRINTcipher: all round keys are the same
- Please don't design too lightweight Key Schedules!
 - Meet-in-the-Middle Attacks
- Diversify the keys

Some Examples of Lightweight Block Ciphers

	Key	Block	S-Box	Permutation	Key
	Size	Size			Schedule
AES	128	128	8	MDS	LIGHT
NEOKEON	128	128	4	BINARY	NO
MINI-AES	64	64	4	MDS	LIGHT
MCRYPTON	64, 92, 128	64	4	BINARY	LIGHT
PRESENT	80, 128	64	4	BIT PERM.	LIGHT
KLEIN	64, 80, 96	64	4	MDS	LIGHT
LED	64, 128	64	4	MDS	NO

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

SPN or Feistel?

- Feistel : $L_{i+1} = R_i$, $R_{i+1} = L_i \oplus f(R_i, k_{i+1})$
- SPN (Substitution-Permutation Network) : $L_{i+1} || R_{i+1} = g(L_i || R_i, k_{i+1})$
- 2 major advantages of Feistel ciphers compared to SPN ciphers:
 - f identical for encryption and decryption
 - Only hardware for one half of the cipher state
- But :
 - Some simple CRPs don't need decryption
 - Feistels require more rounds than a SPN (⇒ time and power consumption penalty)
 - Feistels require XORs to mix the untransformed state with the transformed one (overhead: 2.5 - 3 GEs par bit)
- \Rightarrow At first sight, SPNs win (e.g., PRESENT)
- Counter-example: LILLIPUT

PRESENT

How Far Can We Go?

- Lower bound on area for a given block cipher fixed by the storage of the state and the round keys
 - *e.g.*, 64-bit block cipher with a 80-bit key: 864 GEs (without key-schedule)
- To get small logic, minimize algorithm description
- Impressive results:
 - PRESENT: 80% memory
 - KATAN: 90% memory

Chronology

- 1st generation:
 - Only area optimisations in mind,
 - SPNs (*e.g.*, PRESENT).
- When we want to optimise area in priority, we take "weak" SBoxes and permutations but the number of clock cycles has to increase
- Non-optimal from latency and energy point of view
- 2nd generation:
 - Choose more secure SBoxes and permutation
 - Consider side-channel resistance by design

[8] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, T. Yalçin. "*PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications - Extended Abstract*". ASIACRYPT 2012: pp. 208-225.
[9] M. Knezevic, V. Nikov and P. Rombouts. "*Low-Latency Encryption - Is Lightweight = Light + Wait*?". CHES 2012, LNCS 7428, pp. 426 – 446.

[10] V. Grosso, G. Leurent, F.-X. Standaert, K. Varici. "LS-Designs: Bitslice Encryption for Efficient Masked

Software Implementations". FSE 2014.

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussions

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Introduction

- Designed by Gaël Thomas, Thierry Berger (Limoges University, France) and Marine Minier (INSA Lyon, France)
- New lightweight 64-bit block cipher with 80-bit key
- Extended Generalized Feistel Network (EGFN) [Berger *et al.*, SAC 2013]
- Compact SBox (23 GEs) with desirable security properties
- Improved diffusion
- Involutive structure
- Compares well to other lightweight ciphers in encryption/decryption mode

LILLIPUT Encryption

Figure : Lilliput Encryption

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

LILLIPUT Decryption

Figure : Lilliput Decryption

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

OneRoundEGFN

Key Schedule in Encryption Mode

- ExtractRoundKey: 8 SBoxes
- Current round number xored to the last 5 bits of the subkey

Key Schedule in Decryption Mode

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014 🚺

Security Analysis

Resistance against:

- Differential/Linear Cryptanalysis
- Impossible Differential Attack
- Integral Attack
- Related Key and Chosen Key Attacks
- No attack against:
 - 22 rounds of LILLIPUT in the single key settings
 - 25 rounds of LILLIPUT in the relative, known and chosen key settings
- \Rightarrow Security Margin (30 rounds)

SPN or Feistel? (continued)

- "Some simple CRPs don't need decryption"
 - CRPs only for unilateral authentication, but quid for mutual authentication?
- Feistels require more rounds than a SPN (⇒ time and power consumption penalty)
 - Fast diffusion fills the gap
- Feistels require XORs to mix the untransformed state with the transformed one
 - 21 × 4 XORs = 189 GEs

Theoretical vs. Practical Implem. Results

Component	Cost (GEs)
Storage	828
SBoxes	368
XORs	317.25
2-to-1 MUXes	288
Total (theo.)	1801.25
Total (prac.)	1832

 VHDL, low-power High Vt 65 nm standard-cell library, Synopsis Design Vision D-2010.03-SP5-2 for synthesis and power simulation, typical foundry values (1.2 V, 25°), no scan flip-flops, low-area

Comparison

	Lat.	Thr.	Area	Power	Logic
	(cycles)	(kbit/s)	(GEs)	(μW)	Process
PRESENT-80	32	200	1570	5	0.18 μ m
TWINE	36	178	1799	NA	90 nm
LBlock	32	200	1320	NA	0.18 μ m (theo.)
Piccolo-80	27	237	1274	NA	0.13 μ m (theo.)
Lilliput	30	213	1832	0.9	LP 65nm

At first sight, Lilliput appears not competitive, but:

- Only encryption is implemented,
- Use of scan flip-flops,
- Optimisations,
- Theoretical vs. practical implementation results
- At the end, LILLIPUT enc./dec. has lower (resp. bigger) gate count than the block ciphers which have a (un)secure Key Schedule, *e.g.* PRESENT and TWINE (LBlock and Piccolo)
- The price to pay to have a secure Key Schedule is reasonable (\approx 200 GEs)

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014 Sector Se

Adaptation to the Contraints of RFID Design Decision: Security Reduce the Power Consumption 3 Possible Approaches

Implement Lightweight Cryptography in a 5 Cents Tag Standard Approach Dedicated Approach Exotic Approach

LILLIPUT

Introduction Specifications Security Analysis Implementation Results and Discussions

Conclusion

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Summary

RFID tags face harsh contraints

- Low area
- Low power
- Short messages
- Lightweight block ciphers must...
 - have a small internal state
 - allow a serial implementation
 - have a low latency
 - provide a short output
- Implement cryptography in UHF tags is a challenge
- Lightweight cryptography crucial for RFID security
- LILLIPUT is an interesting candidate where mutual authentication is required

Open Questions

- Sharing tag resources (memory, arithmetic) between cryptographic modules
 - Ideal case: "one-for-all" (encryption, MAC, PRNG, etc.)
- Think about side-channel protection from the design phase
- Authenticated Encryption
- Public-Key Cryptography
- Find a lightweight block cipher which is efficient both in hard and soft

Lightweight Cryptography is an Exciting Topic!

- Many new candidates to analyze regularly
- Interdisciplinary domain
- Hunt hidden overheads

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014

Thanks. Questions?

A New Proposal for Lightweight Cryptography: LILLIPUT | Julien FRANCQ | July 1st 2014 🚺

