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Two constraints to be met simultaneously...

Security / Reliability

= Security: detecting as many faults as possible
= Reliability: detecting only necessary faults
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Fault attacks

- Clock A\\\

= Voltage
= Temperature

Dedicated sensors? @

HIGH VOLTAGE
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State-of-the-art industrial solutions

Dedicated sensors

= Frequency monitors
= Voltage monitors
= Temperature monitors

Problem

= Analog, hence costly to tune
= Many alarms arrive in parallel: management is complex
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Digital sensor®

Sensor performance:
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Design Example: Frequency Sensitivity
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Design Example: Voltage Sensitivity

Est. Sensor Propagation Delay at 360 pSec/Lcell (nSec)
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Main technical characteristics

Simple API
Stable
Small

Descreet, more difficult to
recognize

Melted with the rest of the
SoC, more difficult to
bypass

Low power
Clock gating possible

Even more obscured in
FPGA implementations
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Advantage

Detection Surface
* Increased Temperature
Increased Clock Freq.
Decreased Voltage
Laser Spot
Etc.

+ Frequency

Sensor
Alarm
Triggered

gy

- Temperature Nominal + Temperature
Condition
+ Voltage - Frequency

See also: [SBGT09, BSGD09, SBGD11].
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Add 2nd Sensor — Test Opposite Conditions
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Sorts of variations

Total Variation

. '
Systematic Random
Variation Variation
Layout and Systematic | Intra-die | | Inter-die |
neighborhood across chip
Short range Random
mismatch across chip
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Compact Models

Correlated and Uncorrelated Effects [WLB*05]
B
A
C

= If t,-t, are random, uncorrelated with mean t and variance p? then
the delay from A to B is 4t # 2p

= If ©,-1, are random, correlated with mean t and variance p?then the
delay from A to B is 41 # 4p

= If t,-t; are random, uncorrelated with mean t and variance p? then
the difference in arrival time between B and Cis (+./3s

= If t,-t5 are random, correlated with mean t and variance p? then the
difference in arrival time between B and C is 0

12 Joe Watts, Nanotech Workshop on Compact Modeling 2005 \hN DEMAND BUSINESS™
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Best / worst cases

Worst case

= Correlated in the digital sensor
= Non-correlated between the digital sensor & critical path

In the sequel, we model only uncorrelated noise (in
transistors).
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In 65 nm technology
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Orders of magnitude

1 x buffer

= 90 ps delay
= 6.0 ps variation

10x buffer
= 90 ps delay
= 2.3 ps variation

Typical chain: 40 gates, ~ 4 ns delay, but only 14 ps standard
deviation!

Indeed, uncorrelated variances add, thus the standard deviation
only grow with the square root of the number of delay elements.
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Probability density functions in the digital sensor setup.
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Computations

Definitions

= False positives: a fault is reported but there was none.
= False negatives: a fault has not been detected.

Equations (example for the probability of false positives)

Pep = P(Tsensor > Tclock) = E(]lTsensor> TC|OCk)

B / (btsensof’agensor ( t) ’ ¢tclock :Uglock ( t,) 1 >t dtd t/

+oo pt
- / / ¢tsensor»0'§ensor(t) ' ¢tclock:0'§|ock(t,) dtat ’
—o0 J—00

where ¢, ,2(t) = ¢217T7 exp —(’2_0’;)2 is the probability density

function of the a normal law N (u, o).
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lllustrative “Receiver Operating Characteristic’ (ROC)

Failures in Time (FIT Rate) — Errors per 10° hours
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Advanced considerations: Improvements

= Exposure probability: tampering happens only maybe between zero
and some few hours over the life of the part (< 100 ppm)

= In case of environmental modifications, user logic and sensor track
one another, hence they can never cross each other. But this is ideal:
do delays remain proportionate under these circumstances?

Usncorrelatad | (Largely tracking
withty,, | Withlu)

¢ ,-\A‘ Y
T T
tiogic | [tsensort Leloe) Lsensor2 \ 2 “Lepock
Faor Negaive
False Negative
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[BSGDO9]

[SBG*09]

[SBGD11]

[WLB"05]
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