A novel ring oscillator based PUF on FPGA

Filip Kodýtek and Róbert Lórencz

Czech Technical University in Prague Faculty of Information Technology

CryptArchi 2014

Motivation and goals

- PUF proposal for FPGA
 - easy to implement
 - area efficient
- Implementation and statistical evaluation of PUF
 - tested on 24 Digilent Basys 2 FPGA boards
- Designing key generation using the proposed PUF design

Source of the entropy

Ring oscillator (RO) based
 PUF

Basic building element

Feiten, L., Martin, T., Becker, B. Further Examination of Altera Cyclone IV RO-PUF Capabilities. TRUDEVICE 2013. 3/24

PUF proposal

- Classical approach
 - Frequency comparison

RO 1 Counter Compare Output 0 or 1 RO 2 Counter

Bossuet, L., Ngo, X. T., Cherif, Z., Fischer, V. A PUF based on a transient effect ring oscillator and insensitive to locking phenomenon. In *IEEE Transactions on Emerging Topics in Computing.*

TERO PUF

Suh, G. E., Devadas, S. Physical Unclonable Functions for Device Authentication and Secret Key Generation. In *Design Automation Conference*.

- Our design:
 - ROs do not need to be mutually symmetric
 - More output bits from one pair of ROs

Measuring the number of cycles

Processing counter values

- Counter values are used directly
- Appropriately selected part of this value can be used for PUF

Stability

- Stable positions are required for PUF
- The average stability for position *i* and *n* RO pairs:

Entropy

- Selected bits have to be unique
- *H_{intra}* entropy within each FPGA separately
- *H_{inter}* entropy of particular RO pairs among different FPGAs

$$H_{intra}(i) = -\frac{1}{m} \sum_{j=1}^{m} \sum_{k=0}^{1} p_j(k) \log_2(p_j(k))$$
$$H_{inter}(i) = -\frac{1}{n} \sum_{l=1}^{n} \sum_{k=0}^{1} p_l(k) \log_2(p_l(k))$$

Method of selecting suitable positions

- We are looking for the intersection of high stability and high entropy
- s_{th} and H_{th} threshold values

Position statistics

- Measurements were performed on a circuit containing 300 ROs
- 16-bit counters
- 150 RO pairs 1000 measurements
- 450 RO pairs 500 measurements

position(i)	S _i	H _{intra}	H _{inter}	bias
6	0.9961	0.9973	0.6585	0.5233
7	0.9920	0.9982	0.9232	0.5118
8	0.9841	0.9986	0.9682	0.4978
9	0.9677	0.9984	0.9692	0.4971

PUF design

- Selection of suitable bit positions based on the statistics
- *w* bits from each RO pair
- The PUF output is created by concatenating thus obtained bits
- \Rightarrow maximum amount of bits:

$$\binom{n}{2} * W$$

Dependency of the maximum number of bits on *w* and *n*

PUF design

Statistical evaluation

- BER and HD_{intra} should be ideally 0%
- Ideal value of HD_{inter} is 50%

positions	6-8	7-8	7-9	8-9
w	3	2	3	2
BER	0.92%	1.19%	1.87%	2.41%
HD _{intra}	1.37%	1.78%	2.79%	3.6%
HD _{intra} interval	<0%, 3.56%>	<0%, 4.56%>	<0.74%, 6.37%>	<1.11%, 8.22%>
HD _{inter}	42.69%	48.42%	48.94%	49.96%
HD _{inter} interval	<34.67%, 52.3%>	< <mark>42.33%, 56.</mark> 11%>	<44.74%, 54.74%>	<45.44%, 54.67%>

ROs are not mutually symmetric

Key generation

- Desired properties of generated keys:
 - Stability
 - Uniqueness

- PUF responses usually contain errors
- Additional steps to stabilize PUF responses
 - Modification of suitable bits extraction
 - Error correction code

Modification of suitable bits extraction

- So far, the suitable positions were selected globally for all RO pairs
- Each RO pair has different suitable positions for PUF
- ⇒ it is better to find suitable positions for each RO pair separately
 - More bits from one RO pair
 - Higher stability

Modification of suitable bits extraction

- k measurements for each RO pair
- Stability of each position is checked from the most to the least significant bit (s_i > s_{th})
- Shift towards the most significant bit is applied ⇒ higher stability
- These positions for each RO pair have to be stored

$$s_i > s_{th}$$

1234 5678 9 10 11 12 13 14 15 16
 $rac{1}{pos}$ shift

Error correction code

- Burst errors caused by the overflow of particular counter value parts
- Repetition code R(n)

Measurement 1: 1001 1111 1111 1111 Measurement 2: 1010 0000 0000 0000

Correcting string creation	•	1st PUF output: 10110 01100 01011
PUF output correction	•	2nd PUF output: 11110 00000 01010 Correcting string: 01001 01100 01011 Result of XOR: 10111 01100 00001 1 0 0 Key: 100

Key generation

> 2 phases:

- Initialization phase
- Re-generation phase
- Initialization phase
 - Determination of suitable position for each RO pair
 - Creation of correcting string for repetition code
 - Positions and correcting string represent *helper data*

Key generation

- Re-generation phase
 - Generation of PUF output based on the positions from helper data
 - PUF output correction using the previously created correcting string

Key generation - results

- 450 RO pairs
- w = 3
- ▶ s_{th} = 1

shift	0	1	2	3
min n for R(n)	15	15	12	9
HD _{inter}	48.7%	47.99%	45.97%	42.89%
Bias	50.79%	51.39%	53.5%	56.36%
Key length	90	90	112	150

Conclusion

PUF proposal

- More bits from one RO pair
- ROs do not need to be symmetric
- Key generation
 - Modification of the proposed PUF design
 - Repetition code

Future work

- Testing other FPGAs
- Influence of voltage and temperature
- Testing other error correction codes
- Different placement of ring oscillators

Thank you for your attention