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Motivation - Lattice-Based Cryptography

» Post-quantum and alternative cryptography
» Quantum computers break ECC and RSA - we need

alternatives
» "Penetrating Hard Targets.” - 79.7 million dollar NSA

quantum computer research program
» Classical cryptanalysis of ECC and RSA (e.g., Antoine Joux's
work)
» Why focus on lattice-based cryptography?
» More versatile than code-based, MQ, and hash-based schemes
» Large amount of theoretical foundations and progress
> Practical aspects only researched since approx. 3 years
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Ideal Lattices

» Ideal lattices

» ldeal lattices correspond to ideals in the ring R = Zg4[x]/{f(x))
for some irreducible polynomial function f

> Introduces algebraic structure into previously random lattices -
no serious advantage for attackers so far

» Common choice is Zg[x]/(x" 4+ 1) for n being a power of two
and g a prime such that g =1 mod 2n

» Basic operation is polynomial multiplication
» Like point multiplication for ECC or exponentiation for RSA
> Available algorithms:

> Schoolbook multiplication: O(n2)
» Karatsuba: O(n"22®))
» FFT/NTT: O(nlog n)
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Example
Fix g=5and n=4 — v,k € Zs[x]/(f = x* +1)
> v=4x3+2x2+0x1 +1=(4,2,0,1)
> k=23 +1x+4x' +0=(2,1,4,0)
Addition is usual coordinate-wise addition:
> s=v+k=(44+2mod5,2+1,4,1) =(1,3,4,1)

Multiplication is usual polynomial multiplication followed by reduction
modulo x" 41

z=s-k=1341 - 2140 (1)
41216 4 (2)

13 41 (3)

268 2 (4)

z=s-k=(2,7,15,18,17,4,0) mod 5 = (2,2,0,3,2,4,0) mod x* + 1 =
(3,0,2,0) mod 5
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Challenge 1: Number Theoretic Transform

Theorem (Wrapped Convolution)
Let w be a primitive n-th root of unity in Z.4 and P2 = w.

1. Let d be the negative wrapped convolution of a and b. Let
3,b and d be defined as (ag, a1, ..., " ta,_1),
(b(), by, ..., wn—lbn_l)' and (do, Phdy, ..., l/Jn_ldn_l). Then

d=NTT,Y(NTT,(3)oNTT,(b)).

Advantages:
» Reduction by x" + 1 for free and no zero padding
» Store constants (e.g., @) in NTT representation
» Only %nlogn multiplications for one NTT
Disadvantage:
» Storage or computation of powers of w, 1), w ™!, 1
» Parameter dependent
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Challenge 2: Discrete Gaussian Sampling

-T0 0 TO

» D, is defined by assigning weight proportional to
po(x) = exp(ET"zz) for all integers x
» Tailcut 7 and precision A\ define approximation to real
Gaussian with std. deviation o
> Rejection sampling
> Sample x € [-70,70]
» Choose r € [0, 1]
> Accept if r < po(x)/po(Z) Or «Pr <>

DA
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Hardness Assumptions

Established lattice hardness assumption:
Definition (Decisional Ring-LWE)
Given (a1, t1),...,(@m, tm) € R X R. Decide whether t; = a;s + €;

where s, ey, ...,ey, < D, and a; <i R or uniformly random from
R x R (D, denotes a Gaussian distribution).

» In search version asks to find s
» Decisional and search problem are equivalent

» Basic problem (besides SIS) used for encryption, signatures,
homomorphic cryptography
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Ring-LWE Encryption [LPR10,LP11]

GEN(a):

Enc(a,p, m € {0,1}"):

DEec(c = [e1, 2], r2):

Choosery,ry € Dy and letp =r1—
ar, € R. The public key is p and
the secret key is r».

Choose the noise terms e, e, e3 €
D,. Let m = ENCODE(m) € R,
and compute the ciphertext [c; =
ae; +ep, cr = pe; +e3 —l—ﬁ1] € R2.

Output DECODE(cir; + €3) €

{0,11".

» Correctness: Ci-rh+cr= small Gaussian noise
r,ae;+ryepx+(rp—arp)e;+es+m=m-+e;-r; +e-rp+e;3

» ENCODE() assign bit 0 — 0 and bit 1 — g/2. Thus needs
le1-ri+ex-rp+e3 <q/4

» Security against chosen plaintext attacks (CPA) follows from

Ring-LWE assumption
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Ring-LWE Encryption

N q Bit Size [bits]
Sec. Secret Key | Public Key | Ciphertext
n n[logy(q)] | 2n[logy(q)]
256 4093 | ~ 100 1792 3072 6144
256 7681 | ~ 100 1792 3328 6656
512 12289 | =~ 256 4096 7168 14336

» Scheme is a good benchmark - proably not ready for practice,

yet

» Parameters proposed by Géttert et al.! and Linder/Peikert?

» Relatively large ciphertext expansion of 2[log, q]

'Norman Géttert, Thomas Feller, Michael Schneider, Johannes Buchmann,
Sorin A. Huss: On the Design of Hardware Building Blocks for Modern
Lattice-Based Encryption Schemes. CHES 2012

?Richard Lindner, Chris Peikert: Better Key Sizes (and Attacks) for
LWE-Based Encryption. CT-RSA 2011




Techniques for High-Performance: NTT

Domain Parameters
Temporary value: r; = sample(), Global constant: § = NTT(a)
Secret key: 7 = NTT(sample()), Public key: p = NTT(r; — INTT(Gor))

Algorithm Enc(3, p,m € {0,1}") Algorithm Dec(cy, 2, )

AU I

e1, &, e3 = sample() 1 by = NTT(c1)

é = NTT(e1) 2: Flg = Cioh

hy = do&, hy = poéy 3 m = decode(INTT(hy) +
hy = INTT(h;), ho = INTT(hy) o)

cg=h+e

¢2 = hy + e3 + encode(m)

» Encryption/Decryption: 3/2 NTT operations
> If c1,cp are send in NTT format even more savings possible

(3/1 NTT operations)
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Techniques for High-Performance: Processor

» Polynomial arithmetic is a basic operation in ideal
lattice-based cryptography
» Building hardware is expensive (PhD student perspective: time
consuming)
» Parameters may change - the implementation should cover that
» Provide a useful building block
» Auvailable instructions (one register = one polynomial)
NTT(r1): Execute the NTT on register ry
INTT(r1): Execute the inverse NTT on register ry
PW_MUL(ry, r2): Perform point-wise multiplication
(n+non)
» MOV(n, r2): Move polynomial from one register to another
(I’l — r2)
ADD(ry, r2): Add two polynomials (r; < 1 + 1)
SUB(ry, r2): Subtract two polynomials (r, < rn — 1)

v

v

v

v

v
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Techniques for High-Performance: Processor
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An Evolution of Implementations

Scheme Device  Resources Speed
Ring-LWE V6 [Gen] 146k LUT/82k FF -
(n=256) V6 [Enc] 298k LUT/143k FF  8.05 ps
[Gottert et al., CHES'2012] V6 [Dec] 124k LUT/65k FF 8.10 ps
Our Work V6 [Gen/Enc/Dec] 27.61 ps
(n=256) 4k LUT/3k FF/ 26.19 ps
[Poppelmann et al., SAC'2013] 12 BRAM(18K)/1 DSP48  16.80 ps
Ring-LWE V6 [Enc/Dec] 53.1 ps
(n=512) 1.8k LUT/1.1k FF/ 21.3 ps
[Roy et al., Eprint2013/866.] 3 BRAM(18K)/1 DSP48

Ring-LWE [Enc/Dec] S6 [Enc] 0.4k LUT/0.3k FF/ 1070 ps
(n=256) 1 BRAM(18K)/1 DSP48
[Péppelmann et al., ISCAS'2014 [Dec] 0.1k LUT/0.1k FF/ 370 ps

0.5 BRAM(18K)/1 DSP48

» Huge improvements since first implementation in 2012
P> Roy et al. provide smaller implementation for higher security level

» Lightweight is also possible
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Lattice-Based Signature Schemes

» Most promising lattice-based signature schemes
» GLP3: = 80 bit security, 9000 bit signature, 11800 bit public
key, fast

» BLISS*: 128 bit security, 5600 bit signature, 7000 bit public
key, very fast

» Comparison

» Schemes are quite similar and based on similar ideas

» Advantage of BLISS possible due to usage of discrete Gaussian
noise (instead of uniform).

» Both rely on (more or less) non-standard assumptions

3Practical lattice-based cryptography: A signature scheme for embedded
systems, Tim Giineysu, Vadim Lyubashevsky, Thomas Péppelmann, CHES 2012

*Leo Ducas, Alain Durmus, Tancrede Lepoint, Vadim Lyubashevsky: Lattice
Signatures and Bimodal Gaussians. CRYPTO 2013
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BLISS: Algorithm

Algorithm KeyGen()

1: Choose f,g with di =
2: S = (517 Sz)t
(2g + 1)/f mod q (restart if f is not invertible)
4: Return(pk = A, sk = S) where A =

3 ag =

Alg Sign(u

5‘9"9.":'?99!\."—‘

+— (f,2g +1)*

,pk=A sk=S)
y1,y2 < Dz o

= (- a1 -y1 + y2mod2q
c + H(|ulaq mod p, 1)
Choose a random bit b
Zy < y1+ (—1)bS1C
Z < Yo+ (—1)b52C
Continue with probability

1/ (Mexp( lse)? )cosh (

otherwise restart
Return (z1,22,¢)

[01n] entries in {1}

(a1 =2aq, g — 2) mod 2q

Alg. Verify(u, pk = A, (z1, zz, o))

1 if ||(z2]29 - 2})]» > B> then Reject
2:if ||(z1]29 - 2})||oc > B then Reject

3: Accept iffc=H(|[¢-a1-z14+¢-q-¢c] +

z} mod p, )

=)
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BLISS Implementation

message secret key
PolyMul Compute-U —
1 !

i BRAM-U { q
J Hash SparseMul Compression

Core-S2-1 Core-S1-1 2
e

2
R4 J:BRAM-\Q -
tempif| a MAC MAC] = Z1 2
Keccak-1600] il N,

Rejection
—L Core-S§2-2 Core-S1-2 Sampling
XtractPos
) Scalar reject
Gaussian ] BRAN-Y1 L :
(Bernoulli or CDT) T I—‘

» Implementation of BLISS using ideal lattice processor and
Keccak hash®

> Lattice processor to compute ay; + y2

» Sparse multiplier for z; 5 < y12 + (—l)bsl’zc

®Thomas PSppelmann and Léo Ducas and Tim Giineysu: Enhanced
Lattice-Based Signatures on Reconfigurable Hardware, Eprint2014 /254
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BLISS: Gaussian Sampling

» Standard deviation o &~ 215 much larger than for encryption
(0~ 4.5)

» High speed Gaussian sampling is required (one signature at
least 2n = 1024 samples)

» High performance option is the cumulative distribution table
(CTD)

» Precompute table T[k] =3, p(i)/p(Z)

Sample a uniform real r € [0,1)

Use binary search to find i s.t. T[] <r < T[i+1]

Return £/ (reject 50% of all i = 0)

» However: Naive CDT sampler requires precomputed table of
50 KBytes (23 18K Block RAMs)

v vy
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BLISS: Gaussian Sampling

» Efficient storage using floating point representation
» Fast search using short cut intervals
» Reduction of table size using a Kullback-Leibler divergence
argument
» Usage of convolution theorem
» Given Gaussian xj, x> with variances 02,03, then their
combination x; + kx, is Gaussian with variance 0% + k%03
(under certain smoothing condition)
» We set k =11, 0/ = o/v/1 + k2 ~ 19.53, and sample
X = x1 + kxj for xq,x) < Dy
» No only table for ¢’ required
> Table now 1.8 KBytes with almost no performance impact
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Results and Comparison

Operation Resources Ops/s

BLISS-SIGN [Eprint'14] ~ 7491LUT/7033FF/7.5DSP/6BRAM 7,958
BLISS-VER [Eprint'14]  5275LUT/4488FF/4.5DSP/3BRAM 14,438
GLP-SIGN [unpublished] 5614LUT /6188FF /4DSP/18.5BRAM 1,715
GLP-VER [unpublished] ~ 3966LUT /4318FF /4DSP/14 5BRAM 7,438

SIGN-Only [GLP'12] 7465LUT /8993FF /28DSP/29.5BRAM 931
VER-Only [GLP'12] 6225LUT /6663FF/8DSP/15BRAM 998
RSA-Signature (1024) 3937LS/17DSPs 548
ECDSA (NIST-P224) 1580LS/26DSPs 2,739

ECDSA (ECC GF(2™))  8300LUTs/7BRAMs 24,390
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Conclusion

» Main challenges:
» Fast, efficient, and small polynomial arithmetic (especially
NTT)
» Fast, efficient, and small Gaussian sampling
» Sparse multiplication, rejection sampling, large keys

» Future challenges and opportunities:
» First: Create trust in parameters through cryptanalysis
» How efficient are "advanced” lattice construction (IBE,
SHE/FHE, multilinear maps) or trapdoor-based signatures?
> Protection against side-channel attacks
» Can we move away from Gaussians - at what cost?
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Thank you for your attention!
Any questions?

Papers, VHDL, and C code:
sha.rub.de/research/projects/lattice/

Contact:
thomas.poeppelmann@rub.de
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