Implementation Challenges for Ideal Lattice-Based Cryptography on Reconfigurable Hardware Cryptarchi 2014, Annecy

Thomas Pöppelmann

Ruhr University Bochum, Germany Horst Görtz Institute for IT-Security Advisor: Prof. Dr.-Ing. Tim Güneysu

1 July 2014

イロン イロン イヨン イヨン 三日

1/26

Outline

- Introduction and Motivation
- Ideal Lattices
- Ring-LWE Public Key Encryption
- Lattice-Based Signatures
- Conclusion

Motivation - Lattice-Based Cryptography

- Post-quantum and alternative cryptography
 - Quantum computers break ECC and RSA we need alternatives
 - "Penetrating Hard Targets." 79.7 million dollar NSA quantum computer research program
 - Classical cryptanalysis of ECC and RSA (e.g., Antoine Joux's work)
- Why focus on lattice-based cryptography?
 - ▶ More versatile than code-based, MQ, and hash-based schemes
 - Large amount of theoretical foundations and progress
 - Practical aspects only researched since approx. 3 years

Outline

- Introduction and Motivation
- Ideal Lattices
- Ring-LWE Public Key Encryption
- Lattice-Based Signatures
- Conclusion

Ideal Lattices

- Ideal lattices
 - ► Ideal lattices correspond to ideals in the ring R = Z_q[x]/⟨f(x)⟩ for some irreducible polynomial function f
 - Introduces algebraic structure into previously random lattices no serious advantage for attackers so far
 - Common choice is Z_q[x]/⟨xⁿ + 1⟩ for n being a power of two and q a prime such that q = 1 mod 2n
- Basic operation is polynomial multiplication
 - Like point multiplication for ECC or exponentiation for RSA
 - Available algorithms:
 - Schoolbook multiplication: $O(n^2)$
 - ► Karatsuba: O(n^{log₂(3)})
 - FFT/NTT: $\mathcal{O}(n \log n)$

Example

Fix
$$q = 5$$
 and $n = 4 \rightarrow v, k \in \mathbb{Z}_5[x]/\langle f = x^4 + 1 \rangle$
 $\flat v = 4x^3 + 2x^2 + 0x^1 + 1 = (4, 2, 0, 1)$
 $\flat k = 2x^3 + 1x^2 + 4x^1 + 0 = (2, 1, 4, 0)$

Addition is usual coordinate-wise addition:

▶
$$s = v + k = (4 + 2 \mod 5, 2 + 1, 4, 1) = (1, 3, 4, 1)$$

Multiplication is usual polynomial multiplication followed by reduction modulo $x^n + 1$

$$z = s \cdot k = 1 \quad 3 \quad 4 \quad 1 \quad \cdot \quad 2 \quad 1 \quad 4 \quad 0 \tag{1}$$

 $z = s \cdot k = (2, 7, 15, 18, 17, 4, 0) \mod 5 \equiv (2, 2, 0, 3, 2, 4, 0) \mod x^4 + 1 \equiv (3, 0, 2, 0) \mod 5$

Challenge 1: Number Theoretic Transform

Theorem (Wrapped Convolution)

Let ω be a primitive n-th root of unity in \mathbb{Z}_q and $\psi^2 = \omega$.

1. Let d be the negative wrapped convolution of a and b. Let \bar{a}, \bar{b} and \bar{d} be defined as $(a_0, \psi a_1, ..., \psi^{n-1} a_{n-1})$, $(b_0, \psi b_1, ..., \psi^{n-1} b_{n-1})$, and $(d_0, \psi d_1, ..., \psi^{n-1} d_{n-1})$. Then $\bar{d} = NTT_w^{-1}(NTT_w(\bar{a}) \circ NTT_w(\bar{b}))$.

Advantages:

- Reduction by $x^n + 1$ for free and no zero padding
- Store constants (e.g., \mathbf{a}) in NTT representation
- Only $\frac{1}{2}n \log n$ multiplications for one NTT

Disadvantage:

- ▶ Storage or computation of powers of $\omega, \psi, \omega^{-1}, \psi^{-1}$
- Parameter dependent

Challenge 2: Discrete Gaussian Sampling

- D_{σ} is defined by assigning weight proportional to $\rho_{\sigma}(x) = \exp(\frac{-x^2}{2\sigma^2})$ for all integers x
- Tailcut τ and precision λ define approximation to real Gaussian with std. deviation σ
- Rejection sampling
 - Sample $x \in [-\tau\sigma, \tau\sigma]$
 - ▶ Choose *r* ∈ [0, 1]
 - Accept if r < ρ_σ(x)/ρ_σ(ℤ)

・ロン ・四 と ・ ヨ と ・ ヨ と

Outline

- Introduction and Motivation
- Ideal Lattices
- Ring-LWE Public Key Encryption
- Lattice-Based Signatures
- Conclusion

Hardness Assumptions

Established lattice hardness assumption:

Definition (Decisional Ring-LWE)

Given $(\mathbf{a}_1, \mathbf{t}_1), ..., (\mathbf{a}_m, \mathbf{t}_m) \in \mathcal{R} \times \mathcal{R}$. Decide whether $\mathbf{t}_i = \mathbf{a}_i \mathbf{s} + \mathbf{e}_i$ where $\mathbf{s}, \mathbf{e}_1, ..., \mathbf{e}_m \leftarrow D_\sigma$ and $\mathbf{a}_i \stackrel{\$}{\leftarrow} \mathcal{R}$ or uniformly random from $\mathcal{R} \times \mathcal{R}$ (D_σ denotes a Gaussian distribution).

- In search version asks to find s
- Decisional and search problem are equivalent
- Basic problem (besides SIS) used for encryption, signatures, homomorphic cryptography

Ring-LWE Encryption [LPR10,LP11]

Gen(a):	Choose $\mathbf{r}_1, \mathbf{r}_2 \in D_\sigma$ and let $\mathbf{p} = \mathbf{r}_1 - \mathbf{ar}_2 \in R$. The public key is \mathbf{p} and the secret key is \mathbf{r}_2 .			
Enc $(a,p,m\in\{0,1\}^n)$:	Choose the noise terms $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \in D_{\sigma}$. Let $\mathbf{\bar{m}} = \text{ENCODE}(m) \in R$, and compute the ciphertext $[\mathbf{c}_1 = \mathbf{a}\mathbf{e}_1 + \mathbf{e}_2, \mathbf{c}_2 = \mathbf{p}\mathbf{e}_1 + \mathbf{e}_3 + \mathbf{\bar{m}}] \in R^2$.			
$\mathrm{DEC}(\boldsymbol{c}=[\boldsymbol{c}_1,\boldsymbol{c}_2],\boldsymbol{r}_2)\text{:}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
• Correctness: $\mathbf{c}_1 \cdot \mathbf{r}_2 + \mathbf{c}_2$	= small Gaussian noise			
$\mathbf{r}_2\mathbf{a}\mathbf{e}_1 + \mathbf{r}_2\mathbf{e}_2 + (\mathbf{r}_1 - \mathbf{a}\mathbf{r}_2)\mathbf{e}_1 + \mathbf{e}_3 + \mathbf{\bar{m}} = \mathbf{\bar{m}} + \mathbf{e}_1 \cdot \mathbf{r}_1 + \mathbf{e}_2 \cdot \mathbf{r}_2 + \mathbf{e}_3$				
• ENCODE() assign bit $0 \rightarrow 0$ and bit $1 \rightarrow q/2$. Thus needs				
$ \mathbf{e}_1\cdot\mathbf{r}_1+\mathbf{e}_2\cdot\mathbf{r}_2+\mathbf{e}_3 < q/4$				
Security against chosen plaintext attacks (CPA) follows from				

Ring-LWE assumption

Ring-LWE Encryption

n	q	Bit	Size [bits]		
		Sec.	Secret Key	Public Key	Ciphertext
			n	$n \lceil \log_2(q) \rceil$	$2n \lceil \log_2(q) \rceil$
256	4093	pprox 100	1792	3072	6144
256	7681	pprox 100	1792	3328	6656
512	12289	pprox 256	4096	7168	14336

- Scheme is a good benchmark proably not ready for practice, yet
- Parameters proposed by Göttert et al.¹ and Linder/Peikert²
- Relatively large ciphertext expansion of $2\lceil \log_2 q \rceil$

¹Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, Sorin A. Huss: On the Design of Hardware Building Blocks for Modern Lattice-Based Encryption Schemes. CHES 2012

²Richard Lindner, Chris Peikert: Better Key Sizes (and Attacks) for LWE-Based Encryption. CT-RSA 2011

Techniques for High-Performance: NTT

Domain Parameters

Temporary value: $r_1 = \text{sample}()$, Global constant: $\tilde{a} = \text{NTT}(a)$ Secret key: $\tilde{r}_2 = \text{NTT}(\text{sample}())$, Public key: $\tilde{p} = \text{NTT}(r_1 - \text{INTT}(\tilde{a} \circ \tilde{r}_2))$

Algorithm Enc($\tilde{a}, \tilde{p}, m \in \{0, 1\}^n$) Algorithm Dec(c_1, c_2, \tilde{r}_2)

- 1: $e_1, e_2, e_3 = \text{sample}()$ 2: $\tilde{e}_1 = \operatorname{NTT}(e_1)$ 3: $\tilde{h_1} = \tilde{a} \circ \tilde{e}_1, \tilde{h_2} = \tilde{p} \circ \tilde{e}_1$ 4: $h_1 = \text{INTT}(\tilde{h}_1), h_2 = \text{INTT}(\tilde{h}_2)$ 5: $c_1 = h_1 + e_2$ 6: $c_2 = h_2 + e_3 + \text{encode}(m)$

1:
$$\tilde{h}_1 = \text{NTT}(c_1)$$

2: $\tilde{h}_2 = \tilde{c}_1 \circ \tilde{r}_2$
3: $m = \text{decode}(\text{INTT}(\tilde{h}_2) + c_2)$

- Encryption/Decryption: 3/2 NTT operations
- \blacktriangleright If $\mathbf{c}_1, \mathbf{c}_2$ are send in NTT format even more savings possible (3/1 NTT operations)

Techniques for High-Performance: Processor

- Polynomial arithmetic is a basic operation in ideal lattice-based cryptography
 - Building hardware is expensive (PhD student perspective: time consuming)
 - Parameters may change the implementation should cover that
 - Provide a useful building block
- Available instructions (one register = one polynomial)
 - NTT (r_1) : Execute the NTT on register r_1
 - INTT (r_1) : Execute the inverse NTT on register r_1
 - ▶ $PW_MUL(r_1, r_2)$: Perform point-wise multiplication $(r_1 \leftarrow r_1 \circ r_2)$
 - MOV(r_1, r_2): Move polynomial from one register to another $(r_1 \leftarrow r_2)$
 - ADD (r_1, r_2) : Add two polynomials $(r_1 \leftarrow r_1 + r_2)$
 - ▶ SUB(r_1, r_2): Subtract two polynomials ($r_1 \leftarrow r_1 r_2$)

Techniques for High-Performance: Processor

An Evolution of Implementations

Scheme	Device	Resources	Speed
Ring-LWE (n=256) [Göttert et al., CHES' <u>2012]</u>	V6 V6 V6	[Gen] 146k LUT/82k FF [Enc] 298k LUT/143k FF [Dec] 124k LUT/65k FF	- 8.05 µs 8.10 µs
Our Work (n=256) [Pöppelmann et al., SAC' <u>2013]</u>	V6	[Gen/Enc/Dec] 4k LUT/3k FF/ 12 BRAM(18K)/1 DSP48	27.61 μs 26.19 μs 16.80 μs
Ring-LWE (n=512) [Roy et al., Eprint <u>2013</u> /866.]	V6	[Enc/Dec] 1.8k LUT/1.1k FF/ 3 BRAM(18K)/1 DSP48	53.1 μs 21.3 μs
Ring-LWE [Enc/Dec] (n=256) [Pöppelmann et al., ISCAS' <u>2014]</u>	S6	[Enc] 0.4k LUT/0.3k FF/ 1 BRAM(18K)/1 DSP48 [Dec] 0.1k LUT/0.1k FF/ 0.5 BRAM(18K)/1 DSP48	1070 µs 370 µs

- Huge improvements since first implementation in 2012
- Roy et al. provide smaller implementation for higher security level
- Lightweight is also possible

Outline

- Introduction and Motivation
- Ideal Lattices
- Ring-LWE Public Key Encryption
- Lattice-Based Signatures
- Conclusion

Lattice-Based Signature Schemes

- Most promising lattice-based signature schemes
 - \blacktriangleright GLP³: \approx 80 bit security, 9000 bit signature, 11800 bit public key, fast
 - BLISS⁴: 128 bit security, 5600 bit signature, 7000 bit public key, very fast
- Comparison
 - Schemes are quite similar and based on similar ideas
 - Advantage of BLISS possible due to usage of discrete Gaussian noise (instead of uniform).
 - Both rely on (more or less) non-standard assumptions

³Practical lattice-based cryptography: A signature scheme for embedded systems, Tim Güneysu, Vadim Lyubashevsky, Thomas Pöppelmann, CHES 2012 ⁴Leo Ducas, Alain Durmus, Tancrede Lepoint, Vadim Lyubashevsky: Lattice Signatures and Bimodal Gaussians. CRYPTO 2013

BLISS: Algorithm

Algorithm KeyGen() 1: Choose **f**, **g** with $d_1 = \lceil \delta_1 n \rceil$ entries in $\{\pm 1\}$ 2: $\mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2)^t \leftarrow (\mathbf{f}, 2\mathbf{g} + 1)^t$ 3: $\mathbf{a}_q = (2\mathbf{g} + 1)/\mathbf{f} \mod q$ (restart if **f** is not invertible) 4: Return $(pk = \mathbf{A}, sk = \mathbf{S})$ where $\mathbf{A} = (\mathbf{a}_1 = 2\mathbf{a}_q, q - 2) \mod 2q$ Alg. Verify(μ , $pk = \mathbf{A}$, $(\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})$) Alg. Sign(μ , pk=A, sk=S) 1: $\mathbf{v}_1, \mathbf{v}_2 \leftarrow D_{\mathbb{Z}^n, \sigma}$ 1: if $||(\mathbf{z}_1|2^d \cdot \mathbf{z}_2^{\dagger})||_2 > B_2$ then Reject 2: $\mathbf{u} = \zeta \cdot \mathbf{a}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2q$ 2: if $\|(\mathbf{z}_1|2^d \cdot \mathbf{z}_2^{\dagger})\|_{\infty} > B_{\infty}$ then Reject 3: $\mathbf{c} \leftarrow H(|\mathbf{u}|_d \mod p, \mu)$ 3: Accept iff $\mathbf{c} = H([\zeta \cdot \mathbf{a}_1 \cdot \mathbf{z}_1 + \zeta \cdot \mathbf{q} \cdot \mathbf{c}]_{d} +$ 4: Choose a random bit b $\mathbf{z}_{2}^{\dagger} \mod \boldsymbol{p}, \boldsymbol{\mu}$ 5: $\mathbf{z}_1 \leftarrow \mathbf{v}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$ 6: $\mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}$ 7: Continue with probability $1 \left(M \exp\left(-\frac{\|\mathbf{Sc}\|^2}{2\sigma^2}\right) \cosh\left(\frac{\langle \mathbf{z}, \mathbf{Sc} \rangle}{\sigma^2}\right) \right)$ otherwise restart

・ロト ・得ト ・ヨト ・ヨト 三日

19/26

8: **Return** (z_1, z_2, c)

BLISS Implementation

- Implementation of BLISS using ideal lattice processor and Keccak hash⁵
- Lattice processor to compute ay₁ + y₂
- Sparse multiplier for $\mathbf{z}_{1,2} \leftarrow \mathbf{y}_{1,2} + (-1)^b \mathbf{s}_{1,2} \mathbf{c}$

⁵Thomas Pöppelmann and Léo Ducas and Tim Güneysu: Enhanced Lattice-Based Signatures on Reconfigurable Hardware, Eprint2014/254

BLISS: Gaussian Sampling

- Standard deviation $\sigma \approx 215$ much larger than for encryption $(\sigma \approx 4.5)$
- ► High speed Gaussian sampling is required (one signature at least 2n = 1024 samples)
- High performance option is the cumulative distribution table (CTD)
 - Precompute table $T[k] = \sum_{i \leq k} \rho(i) / \rho(\mathbb{Z})$
 - Sample a uniform real $r \in [0,\overline{1})$
 - Use binary search to find *i* s.t. $T[i] < r \le T[i+1]$
 - Return $\pm i$ (reject 50% of all i = 0)
- However: Naive CDT sampler requires precomputed table of 50 KBytes (23 18K Block RAMs)

BLISS: Gaussian Sampling

- Efficient storage using floating point representation
- Fast search using short cut intervals
- Reduction of table size using a Kullback-Leibler divergence argument
- Usage of convolution theorem
 - Given Gaussian x₁, x₂ with variances σ₁², σ₂², then their combination x₁ + kx₂ is Gaussian with variance σ₁² + k²σ₂² (under certain smoothing condition)
 - We set k = 11, $\sigma' = \sigma/\sqrt{1 + k^2} \approx 19.53$, and sample $x = x_1 + kx'_2$ for $x_1, x'_2 \leftarrow D_{\sigma'}$
 - No only table for σ' required
- ▶ Table now 1.8 KBytes with almost no performance impact

Results and Comparison

Operation	Resources	Ops/s
BLISS-SIGN [Eprint'14]	7491LUT/7033FF/7.5DSP/6BRAM	7,958
BLISS-VER [Eprint'14]	5275LUT/4488FF/4.5DSP/3BRAM	14,438
GLP-SIGN [unpublished]	5614LUT/6188FF/4DSP/18.5BRAM	1,715
GLP-VER [unpublished]	3966LUT/4318FF/4DSP/14.5BRAM	7,438
SIGN-Only [GLP'12]	7465LUT/8993FF/28DSP/29.5BRAM	931
VER-Only [GLP'12]	6225LUT/6663FF/8DSP/15BRAM	998
RSA-Signature (1024)	3937LS/17DSPs	548
ECDSA (NIST-P224)	1580LS/26DSPs	2,739
ECDSA (ECC <i>GF</i> (2 ^m))	8300LUTs/7BRAMs	24,390

Outline

- Introduction and Motivation
- Ideal Lattices
- Ring-LWE Public Key Encryption
- Lattice-Based Signatures
- Conclusion

Conclusion

- Main challenges:
 - Fast, efficient, and small polynomial arithmetic (especially NTT)
 - Fast, efficient, and small Gaussian sampling
 - Sparse multiplication, rejection sampling, large keys
- Future challenges and opportunities:
 - First: Create trust in parameters through cryptanalysis
 - How efficient are "advanced" lattice construction (IBE, SHE/FHE, multilinear maps) or trapdoor-based signatures?

25 / 26

- Protection against side-channel attacks
- Can we move away from Gaussians at what cost?

Thank you for your attention! Any questions?

Papers, VHDL, and C code: sha.rub.de/research/projects/lattice/

Contact: thomas.poeppelmann@rub.de

26 / 26