
Implementation Challenges for Ideal
Lattice-Based Cryptography on Reconfigurable

Hardware
Cryptarchi 2014, Annecy

Thomas Pöppelmann

Ruhr University Bochum, Germany
Horst Görtz Institute for IT-Security
Advisor: Prof. Dr.-Ing. Tim Güneysu

1 July 2014

1 / 26

Outline

I Introduction and Motivation

I Ideal Lattices

I Ring-LWE Public Key Encryption

I Lattice-Based Signatures

I Conclusion

2 / 26

Motivation - Lattice-Based Cryptography

I Post-quantum and alternative cryptography
I Quantum computers break ECC and RSA - we need

alternatives
I ”Penetrating Hard Targets.” - 79.7 million dollar NSA

quantum computer research program
I Classical cryptanalysis of ECC and RSA (e.g., Antoine Joux’s

work)

I Why focus on lattice-based cryptography?
I More versatile than code-based, MQ, and hash-based schemes
I Large amount of theoretical foundations and progress
I Practical aspects only researched since approx. 3 years

3 / 26

Outline

I Introduction and Motivation

I Ideal Lattices

I Ring-LWE Public Key Encryption

I Lattice-Based Signatures

I Conclusion

4 / 26

Ideal Lattices

I Ideal lattices
I Ideal lattices correspond to ideals in the ring R = Zq[x]/〈f (x)〉

for some irreducible polynomial function f
I Introduces algebraic structure into previously random lattices -

no serious advantage for attackers so far
I Common choice is Zq[x]/〈xn + 1〉 for n being a power of two

and q a prime such that q = 1 mod 2n

I Basic operation is polynomial multiplication
I Like point multiplication for ECC or exponentiation for RSA
I Available algorithms:

I Schoolbook multiplication: O(n2)
I Karatsuba: O(nlog2(3))
I FFT/NTT: O(n log n)

5 / 26

Example

Fix q = 5 and n = 4 → v , k ∈ Z5[x]/〈f = x4 + 1〉
I v = 4x3 + 2x2 + 0x1 + 1 = (4, 2, 0, 1)

I k = 2x3 + 1x2 + 4x1 + 0 = (2, 1, 4, 0)

Addition is usual coordinate-wise addition:

I s = v + k = (4 + 2 mod 5, 2 + 1, 4, 1) = (1, 3, 4, 1)

Multiplication is usual polynomial multiplication followed by reduction
modulo xn + 1

z = s · k = 1 3 4 1 · 2 1 4 0 (1)

4 12 16 4 (2)

1 3 4 1 (3)

2 6 8 2 (4)

z = s · k = (2, 7, 15, 18, 17, 4, 0) mod 5 ≡ (2, 2, 0, 3, 2, 4, 0) mod x4 + 1 ≡
(3, 0, 2, 0) mod 5

6 / 26

Challenge 1: Number Theoretic Transform

Theorem (Wrapped Convolution)

Let ω be a primitive n-th root of unity in Zq and ψ2 = ω.

1. Let d be the negative wrapped convolution of a and b. Let
ā, b̄ and d̄ be defined as (a0, ψa1, ..., ψ

n−1an−1),
(b0, ψb1, ..., ψ

n−1bn−1), and (d0, ψd1, ..., ψ
n−1dn−1). Then

d̄ = NTT−1
w (NTTw (ā)◦NTTw (b̄)).

Advantages:

I Reduction by xn + 1 for free and no zero padding

I Store constants (e.g., a) in NTT representation

I Only 1
2n log n multiplications for one NTT

Disadvantage:

I Storage or computation of powers of ω, ψ, ω−1, ψ−1

I Parameter dependent

7 / 26

Challenge 2: Discrete Gaussian Sampling

I Dσ is defined by assigning weight proportional to
ρσ(x) = exp(−x2

2σ2) for all integers x
I Tailcut τ and precision λ define approximation to real

Gaussian with std. deviation σ
I Rejection sampling

I Sample x ∈ [−τσ, τσ]
I Choose r ∈ [0, 1]
I Accept if r < ρσ(x)/ρσ(Z)

8 / 26

Outline

I Introduction and Motivation

I Ideal Lattices

I Ring-LWE Public Key Encryption

I Lattice-Based Signatures

I Conclusion

9 / 26

Hardness Assumptions

Established lattice hardness assumption:

Definition (Decisional Ring-LWE)

Given (a1, t1), ..., (am, tm) ∈ R×R. Decide whether ti = ais + ei

where s, e1, ..., em ← Dσ and ai
$← R or uniformly random from

R×R (Dσ denotes a Gaussian distribution).

I In search version asks to find s

I Decisional and search problem are equivalent

I Basic problem (besides SIS) used for encryption, signatures,
homomorphic cryptography

10 / 26

Ring-LWE Encryption [LPR10,LP11]

Gen(a): Choose r1, r2 ∈ Dσ and let p = r1−
ar2 ∈ R. The public key is p and
the secret key is r2.

Enc(a,p,m ∈ {0, 1}n): Choose the noise terms e1, e2, e3 ∈
Dσ. Let m̄ = encode(m) ∈ R,
and compute the ciphertext [c1 =
ae1 +e2, c2 = pe1 +e3 + m̄] ∈ R2.

Dec(c = [c1, c2], r2): Output decode(c1r2 + c2) ∈
{0, 1}n.

I Correctness: c1 · r2 + c2 =
r2ae1 +r2e2 +(r1−ar2)e1 +e3 +m̄ = m̄+

small Gaussian noise︷ ︸︸ ︷
e1 · r1 + e2 · r2 + e3

I encode() assign bit 0→ 0 and bit 1→ q/2. Thus needs
|e1 · r1 + e2 · r2 + e3| < q/4

I Security against chosen plaintext attacks (CPA) follows from
Ring-LWE assumption

11 / 26

Ring-LWE Encryption

n q
Bit Size [bits]
Sec. Secret Key Public Key Ciphertext

n ndlog2(q)e 2ndlog2(q)e
256 4093 ≈ 100 1792 3072 6144
256 7681 ≈ 100 1792 3328 6656
512 12289 ≈ 256 4096 7168 14336

I Scheme is a good benchmark - proably not ready for practice,
yet

I Parameters proposed by Göttert et al.1 and Linder/Peikert2

I Relatively large ciphertext expansion of 2dlog2 qe

1Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann,
Sorin A. Huss: On the Design of Hardware Building Blocks for Modern
Lattice-Based Encryption Schemes. CHES 2012

2Richard Lindner, Chris Peikert: Better Key Sizes (and Attacks) for
LWE-Based Encryption. CT-RSA 2011

12 / 26

Techniques for High-Performance: NTT

Domain Parameters
Temporary value: r1 = sample(), Global constant: ã = NTT(a)
Secret key: r̃2 = NTT(sample()), Public key: p̃ = NTT(r1 − INTT(ã◦r̃2))

Algorithm Enc(ã, p̃,m ∈ {0, 1}n)

1: e1, e2, e3 = sample()
2: ẽ1 = NTT(e1)
3: h̃1 = ã◦ẽ1, h̃2 = p̃◦ẽ1

4: h1 = INTT(h̃1), h2 = INTT(h̃2)
5: c1 = h1 + e2

6: c2 = h2 + e3 + encode(m)

Algorithm Dec(c1, c2, r̃2)

1: h̃1 = NTT(c1)
2: h̃2 = c̃1◦r̃2
3: m = decode(INTT(h̃2) +

c2)

I Encryption/Decryption: 3/2 NTT operations
I If c1, c2 are send in NTT format even more savings possible

(3/1 NTT operations)

13 / 26

Techniques for High-Performance: Processor

I Polynomial arithmetic is a basic operation in ideal
lattice-based cryptography

I Building hardware is expensive (PhD student perspective: time
consuming)

I Parameters may change - the implementation should cover that
I Provide a useful building block

I Available instructions (one register = one polynomial)
I NTT(r1): Execute the NTT on register r1
I INTT(r1): Execute the inverse NTT on register r1
I PW MUL(r1, r2): Perform point-wise multiplication

(r1 ← r1 ◦ r2)
I MOV(r1, r2): Move polynomial from one register to another

(r1 ← r2)
I ADD(r1, r2): Add two polynomials (r1 ← r1 + r2)
I SUB(r1, r2): Subtract two polynomials (r1 ← r1 − r2)

14 / 26

Techniques for High-Performance: Processor

Butterfly

NTT)multiplier Register)file

instruction

ALU
Processing)

element

R0 R1 R4 R5 R6

SR2a

I/O)SR3a

ROM

Decoder
config

mod p

Sampler

Generic)
processor

R0_0

R0_1

R1_0

R1_1

config
config

15 / 26

An Evolution of Implementations

Scheme Device Resources Speed

Ring-LWE V6 [Gen] 146k LUT/82k FF -
(n=256) V6 [Enc] 298k LUT/143k FF 8.05 µs
[Göttert et al., CHES’2012] V6 [Dec] 124k LUT/65k FF 8.10 µs

Our Work V6 [Gen/Enc/Dec] 27.61 µs
(n=256) 4k LUT/3k FF/ 26.19 µs
[Pöppelmann et al., SAC’2013] 12 BRAM(18K)/1 DSP48 16.80 µs

Ring-LWE V6 [Enc/Dec] 53.1 µs
(n=512) 1.8k LUT/1.1k FF/ 21.3 µs
[Roy et al., Eprint2013/866.] 3 BRAM(18K)/1 DSP48

Ring-LWE [Enc/Dec] S6 [Enc] 0.4k LUT/0.3k FF/ 1070 µs
(n=256) 1 BRAM(18K)/1 DSP48
[Pöppelmann et al., ISCAS’2014] [Dec] 0.1k LUT/0.1k FF/ 370 µs

0.5 BRAM(18K)/1 DSP48

I Huge improvements since first implementation in 2012

I Roy et al. provide smaller implementation for higher security level

I Lightweight is also possible

16 / 26

Outline

I Introduction and Motivation

I Ideal Lattices

I Ring-LWE Public Key Encryption

I Lattice-Based Signatures

I Conclusion

17 / 26

Lattice-Based Signature Schemes

I Most promising lattice-based signature schemes
I GLP3: ≈ 80 bit security, 9000 bit signature, 11800 bit public

key, fast
I BLISS4: 128 bit security, 5600 bit signature, 7000 bit public

key, very fast

I Comparison
I Schemes are quite similar and based on similar ideas
I Advantage of BLISS possible due to usage of discrete Gaussian

noise (instead of uniform).
I Both rely on (more or less) non-standard assumptions

3Practical lattice-based cryptography: A signature scheme for embedded
systems, Tim Güneysu, Vadim Lyubashevsky, Thomas Pöppelmann, CHES 2012

4Leo Ducas, Alain Durmus, Tancrede Lepoint, Vadim Lyubashevsky: Lattice
Signatures and Bimodal Gaussians. CRYPTO 2013

18 / 26

BLISS: Algorithm

Algorithm KeyGen()

1: Choose f, g with d1 = dδ1ne entries in {±1}
2: S = (s1, s2)t ← (f, 2g + 1)t

3: aq = (2g + 1)/f mod q (restart if f is not invertible)
4: Return(pk = A, sk = S) where A = (a1 = 2aq, q − 2) mod 2q

Alg. Sign(µ,pk=A,sk=S)
1: y1, y2 ← DZn,σ

2: u = ζ· a1 · y1 + y2 mod2q
3: c← H(bued mod p, µ)
4: Choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: Continue with probability

1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
otherwise restart

8: Return (z1, z2, c)

Alg. Verify(µ, pk = A, (z1, z
†
2, c))

1: if ‖(z1|2d · z†2)‖2 > B2 then Reject
2: if ‖(z1|2d · z†2)‖∞ > B∞ then Reject
3: Accept iff c = H

(⌊
ζ · a1 · z1 + ζ · q · c

⌉
d
+

z†2 mod p, µ)

19 / 26

BLISS Implementation

secret-key

SparseMul

PolyMul

DecoderALU

NTT

RvR'

Rf
tempv

R)

Hash
Ram2U

ExtractPos

Compression

Rejection-
Sampling

Ram2M

Keccak2f[vG'']

message

Zv

Z(Compress
Core2S(2v

Ram2S(

MAC
BRAM2Y(

BRAM2U

BRAM2Yv

Zv

Z(g

c

reject

Compute2U

Norm Scalar

TriviumB
expK−xY f[

Gaussian
sampler

FIFO

KBernoulli-or-CDT[

Ram2Pos

Core2S(2(

Ram2S(

MAC

Core2Sv2v

Ram2Sv

MAC

Core2Sv2(

Ram2Sv

MAC

I Implementation of BLISS using ideal lattice processor and
Keccak hash5

I Lattice processor to compute ay1 + y2

I Sparse multiplier for z1,2 ← y1,2 + (−1)bs1,2c

5Thomas Pöppelmann and Léo Ducas and Tim Güneysu: Enhanced
Lattice-Based Signatures on Reconfigurable Hardware, Eprint2014/254

20 / 26

BLISS: Gaussian Sampling

I Standard deviation σ ≈ 215 much larger than for encryption
(σ ≈ 4.5)

I High speed Gaussian sampling is required (one signature at
least 2n = 1024 samples)

I High performance option is the cumulative distribution table
(CTD)

I Precompute table T [k] =
∑

i≤k ρ(i)/ρ(Z)
I Sample a uniform real r ∈ [0, 1)
I Use binary search to find i s.t. T [i] < r ≤ T [i + 1]
I Return ±i (reject 50% of all i = 0)

I However: Naive CDT sampler requires precomputed table of
50 KBytes (23 18K Block RAMs)

21 / 26

BLISS: Gaussian Sampling

I Efficient storage using floating point representation

I Fast search using short cut intervals

I Reduction of table size using a Kullback-Leibler divergence
argument

I Usage of convolution theorem
I Given Gaussian x1, x2 with variances σ2

1 , σ
2
2 , then their

combination x1 + kx2 is Gaussian with variance σ2
1 + k2σ2

2

(under certain smoothing condition)
I We set k = 11, σ′ = σ/

√
1 + k2 ≈ 19.53, and sample

x = x1 + kx ′2 for x1, x
′
2 ← Dσ′

I No only table for σ′ required

I Table now 1.8 KBytes with almost no performance impact

22 / 26

Results and Comparison

Operation Resources Ops/s

BLISS-SIGN [Eprint’14] 7491LUT/7033FF/7.5DSP/6BRAM 7,958
BLISS-VER [Eprint’14] 5275LUT/4488FF/4.5DSP/3BRAM 14,438
GLP-SIGN [unpublished] 5614LUT/6188FF/4DSP/18.5BRAM 1,715
GLP-VER [unpublished] 3966LUT/4318FF/4DSP/14.5BRAM 7,438

SIGN-Only [GLP’12] 7465LUT/8993FF/28DSP/29.5BRAM 931
VER-Only [GLP’12] 6225LUT/6663FF/8DSP/15BRAM 998
RSA-Signature (1024) 3937LS/17DSPs 548
ECDSA (NIST-P224) 1580LS/26DSPs 2,739
ECDSA (ECC GF (2m)) 8300LUTs/7BRAMs 24,390

23 / 26

Outline

I Introduction and Motivation

I Ideal Lattices

I Ring-LWE Public Key Encryption

I Lattice-Based Signatures

I Conclusion

24 / 26

Conclusion

I Main challenges:
I Fast, efficient, and small polynomial arithmetic (especially

NTT)
I Fast, efficient, and small Gaussian sampling
I Sparse multiplication, rejection sampling, large keys

I Future challenges and opportunities:
I First: Create trust in parameters through cryptanalysis
I How efficient are ”advanced” lattice construction (IBE,

SHE/FHE, multilinear maps) or trapdoor-based signatures?
I Protection against side-channel attacks
I Can we move away from Gaussians - at what cost?

25 / 26

Thank you for your attention!

Any questions?

Papers, VHDL, and C code:
sha.rub.de/research/projects/lattice/

Contact:
thomas.poeppelmann@rub.de

26 / 26

sha.rub.de/research/projects/lattice/

