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Outline of the talk

Motivation
Relation between CPA and the stochastic 

approach 
The optimal CPA function
Experimental results 
Conclusion
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Motivation

 Dozens of papers on CPA attacks have been 
published. Typically, CPA attacks focus on a single 
bit or apply a Hamming weight (distance) model.

 Natural questions:
For a given implementation: 
 What is the most efficient CPA function? 
 What is the (theoretical) limit of a univariate CPA 

attack? 
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What’s new? 

 This talk considers univariate CPA attacks on 
unprotected block ciphers. 

 We develop an explicit expression for the optimal 
CPA function (in dependency of the leakage 
distribution) for leakage models with given 
complexity.

Reference:
[1] Michael Kasper, Werner Schindler: Towards 
Optimal Correlation Analysis Attacks by High-
Dimensional Stochastic Models. Status: Submitted.
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Definition

x  {0,1}p set of admissible (known) parts of the 
plaintext or ciphertext
[AES: typically, p = 8 or p = 16]

k’  {0,1}s set of admissible subkeys
[AES: typically,  s = 8 ]

k correct subkey
ft : {0,1}p  {0,1}s  R        CPA function at time t;

[e.g.,  Hamming weight of an Sbox output]
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 The CPA function ft,2 is viewed better than ft,1, if the 
absolute value ௧ ௧,ଶ is larger 
than  ௧ ௧,ଵ .

 We interpret x1,x2, …, xN as realizations of iid
(independent and identically distributed) random 
variables X1,X2, …, XN.

 As N tends to infinity the term N(it,ft,k’) converges 
to the correlation coefficient

CPA
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The stochastic model

deterministic part
= leakage function
(depends on x and k)

=  ht(x,k)  +

quantifies the random-
ness of the side-channel 
signal at time t

Random variable 
(depends on x and k)

It(x,k)

Noise (centered)

Random variable

Rt

E(Rt) = 0
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 For fixed subkey k  {0,1}s the unknown function 

ht;k:  {0,1}p  {k}  R,   ht;k(x;k):= ht (x;k) 

is interpreted as an element of the real vector space 
Fk:= {h’: {0,1}p  {k}  R}                     [dim(Fk)= 2p]

 Stochastic approach: Approximate the leakage 
function ht;k by its image h*t;k under the orthogonal 
projection onto a suitably selected low-dimensional 
vector subspace Fu,t;k .

Stochastic approach: Profiling, Step 1
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Geometric illustration

ht;k

Fu,t;k

subspace

ht;k*
. orthogonal projection

k fixed

The image h*t,k is the best approximator of ht;k in Fu,t;k



Kasper, Schindler                                                                     30.06.2014 Slide 10

 Assume that Prob(X=x) > 0 for all {0,1}p . (Otherwise 
cancel those elements that occur with probability 0.)

 Then
(f1,f2):= 1 2௫∈ሼ଴,ଵሽ^௣ = E(f1f2)
defines a scalar product on Fk

 Here and in the following g0,t;k = 1, g1,t;k,…,g2
p

-1,t;k  
denotes an orthonormal basis of Fk w.r.t (,).

 In particular, 

A scalar product on Fk

௧;௞, ௜,௧;௞ ௝,௧;௞ ௝,௧;௞ ௜,௧;௞
ଶ௣ିଵ
௝ୀ଴ ௜,௧;௞
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 Assume that E(ft(X,k)) = 0.  Then

corr(It(X,k),ft(X,k)) = … = const(ht;k(X,k), ft(X,k)
||ft(X,k)|| ), 

 CPA with the function ft(x,k) basically corresponds to 
the stochastic approach with the 1-dimensional 
subspace < ft( ,k) >

CPA (from a more theoretical standpoint)
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Theorem: Assume that g0,t;k = 1, g1,t;k,…,gu-1,t;k is an 
orthonormal basis of Fu,t;k , and 2 Var(Rt).
Then fopt,t := ht;k* = ௝,௧;௞

௨ିଵ
௝ୀ଴ ௝,௧;௞ is the optimal CPA 

function, which is contained in the subspace Fu,t;k. 
In particular, 

Optimal CPA  

corr( ௧ ௢௣௧,௧ ) = 
∑ ఉೕ,೟;ೖ

మ
	

ೠషభ
ೕసభ

∑ ఉೕ,೟;ೖ
మ ାఙమ

	
మ^೛షభ
ೕసభ

= 
௏௔௥೉ሺ௛೟;ೖ

∗ ሺ௑,௞ሻሻ

௏௔௥ሺூ೟ሺ௑,௞ሻሻ
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 We have determined an explicit formula for the 
optimal CPA function in different subspaces.

 How large is the information gain compared to 
‘standard’  CPA functions?

Practical relevance?  
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AES: Final round
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Leakage model

15

g0,t;k(x,k) := 1
gj,t;k(x,k)  := (x[b]  S-1(x[a]  k[a]))j - 0.5

for 1  j  8

Here x = (x[a],x[b]) and k = k[a], e.g. (a,b) = (2,6). 
Moreover, 

9-dimensional subspace

݆, ;ݐ ݇ , ;ݐ ݇
for 1 j  8
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High dimensional leakage models

High-dimensional leakage models also capture 
interactions between bit lines, in particular propagation 
glitches or cross-talk phenomena.
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AES Sbox Design

The SBox design affects the power consumption considerably. In 
our experiments we considered three different design principles:

 AES-TBL: Look-up table-based SBox Design (LUT-based) 
 AES-PPRM3: Circuit-based  SBox Design 
 AES-COMP: Composite-field-based SBox Design
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Correlation coefficients 
(averaged over all key bytes)

1 : ‘Standard CPA’ (Hamming distance model)
2 – 256: Optimal CPA (high-dimensional stochastic models; 

u = 2, …, 256)

AES-TBL AES-PPRM3 AES-COMP
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Information gain

 The ratios of the averaged correlation coefficients 
(optimal CPA to ‘standard’ CPA) are 1.0190, 
1.1350, and 1.7634 (for AES-TBL, AES-PPRM3, 
AES-COMP)

 For AES-COMP the information gain of the 
optimal CPA compared to ‘standard’ CPA (HD 
model) is maximal. 

 For AES-COMP the high-dimensional subspaces 
Fu,t;k capture the leakage much better than the 
standard CPA. 
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Global success rate

 For AES-COMP the minimum number of  power 
traces needed for stable GSR decreases from 10.000 
(standard CPA) to 2.300 traces (optimal CPA). 

AES-TBL AES-PPRM3 AES-COMP

White colouring means ‘attack successful’.
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Correlation coefficients (fine grained)
AES-TBL

AES-PPRM3 AES-COMP

Each vertical bar consists 
of 10 vertical sub-bars, 
which correspond to the 
standard CPA and to the 
optimal CPA for u = 
2,…,256, resp.
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Design complexity and information gain

 In our experiments the information gain of the 
optimal CPA over the standard CPA increased with 
the complexity of the Sbox design. 

 One might assume that high design complexity 
generally implies higher information gain. However, 
this requires further experiments with different 
designs.

no. of LUTs Max. freq. (MHz) max. timing (ns) 
AES-TBL 1409 257.966 4.558
AES-PPRM3 2283 134.228 8.138
AES-COMP 2066 135.888 11.274
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Conclusion

 It has been well-known that the stochastic 
approach can be applied as an efficient attack tool 
and to obtain design information.

 In this talk we used the stochastic approach to 
derive the optimal CPA function to (arbitrary) given 
leakage distributions and for varying complexity of 
the leakage model.

 Experiments with three FPGA implementations of 
the AES cipher showed that the ‘information gain’ 
depends on the concrete implementation.
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