Analysis Of Variance and CPA in SCA

S. Tiran¹, G. Reymond², J.B. Rigaud³, D. Aboulkassimi², G. Ducharmes⁴, P. Maurine²

¹ LIRMM

²CEA

³EMSE

⁴ EPS - Institut de Mathématiques et de Modélisation de Montpellier

Is CPA a wise choice in the context of SCA?

<u>CPA :</u>

- Easy to compute
- Fast
- Only detect linear relations

<u>MIA :</u>

- Can detect any kind of relations
- Requires a good choice of hyper-parameters*
- Time consuming

* Mathieu Carbone, Sébastien Tiran, Sébastien Ordas, Michel Agoyan, Yannick Teglia, G. Ducharme, and Philippe Maurine. On adaptive bandwidth selection for ecient MIA.

Analysis Of Variance in SCA

- Introduced by F. Standaert and B. Gierlichs in [1] and further analysed in [2]
- No general conclusion could be drawn
- Seems to give similar results to the other attacks on the devices that were tested

[1] François-Xavier Standaert, Benedikt Gierlichs, and Ingrid Verbauwhede. Partition vs. comparison side channel distinguishers: An empirical evaluation of statistical tests for univariate side-channel attacks against two unprotected cmos devices.

[2] Lejla Batina, Benedikt Gierlichs, and Kerstin Lemke-Rust. Differential cluster analysis.

Analysis Of Variance in SCA

- More generic distinguisher than Pearson correlation
- Can detect any kind of relation on the means
- No hyper-parameter to select

Is the <u>Analysis Of Variance (AOV)</u> a good alternative to CPA?

AOV principle

- The one-way AOV allows to study the behavior of a random variable *L* according to the values of a factor *H*, taking *H* distinct values denoted h.
- A sample of n_h values of L, noted {L_{h,1},...,L_{h,n_h}} is observed at each value h.

AOV principle

• The total sum of squares is defined as :

$$SS_{tot} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} (L_{h,i} - \bar{L})^2$$

The decomposition can be written as :

$$SS_{tot} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} (L_{h,i} - \bar{L}_{h.})^2 + \sum_{h=1}^{H} n_h (\bar{L}_{h.} - \bar{L})^2$$
$$SS_{tot} = SS_{err} + SS_{treat}$$
$$R_{aov}^2 = 1 - \frac{SS_{err}}{SS_{tot}}$$

Comparing AOV to Pearson correlation

- The coefficient of determination, denoted R², indicates how well data fit a statistical model.
- In case of a simple linear regression, R²_{reg} is simply the square of the Pearson correlation coefficient used in CPA.

What is the difference between R²_{aov} and R²_{reg}?

Comparing AOV to Pearson correlation

When H=2, the AOV is the same as a squared student t test, and R²_{aov}=R²_{reg} (the square of Pearson correlation coefficient).

In this case, CPA is also equivalent to Kocher's DPA*.

• When H>2, R^2_{aov} is equivalent to R^2_{reg} if the points {(h, $\overline{L}_{h.}$), h=1...H) fall on a straight line.

* Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for allall for one: unifying standard differential power analysis attacks.

Comparing AOV to Pearson correlation

- Comparison between AOV and CPA :
 - Both should give similar results when the leakage is linear
 - AOV should provide better results than CPA in nonlinear cases
- AOV remains less generic than MIA, because it cannot detect links in moments higher than the mean.

Experimental Results

Comparison of two test-cases :

- DPA contest v2
- AES-128 designed with a 65nm Low Power High Threshold Voltage CMOS technology

Leakage profiling

- What is the shape of the leakage on these two cases?
 - Least squares method to find the polynomial that fits the best the data.
- What is the degree of the polynomial that best represents the data?

- The AIC (Akaike Information Criterion) estimates the degree of the polynomial fitting the best the data.
- The AIC is a trade-off between godness of fit and complexity.
- Its expression is :

$$AIC = 2(N+1) + n \times \ln\left(\frac{SS_{reg}}{n}\right)$$

with N the degree of the polynomial, n the number of points, SS_{reg} the regression sum of squares.

<u>Context</u> : known key, HD model, HW partitionning For both test-cases, and for each S-box, the degree of the polynomial that minimizes the **AIC** is searched :

S-box	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DPA-v2 AES	2	1	1	2	1	1	2	1	3	1	1	2	3	1	1	1
65nm AES	4	5	6	5	0	5	6	6	4	8	5	5	8	5	5	5

DPA-v2 AES : leakage close to linearity
65nm AES : leakage far from linearity

Leakage profiling

DPAv2-AES (20000 traces) -Polynomial fitting the best the leakage according to the AIC

65nm-AES - Polynomial fitting the best the leakage according to the AIC

CPA vs AOV : number of traces

Mean Guessing Entropy obtained with CPA, AOV and MIA after the processing of 20000 traces of the DPAv2-AES Mean Guessing Entropy obtained with CPA, AOV and MIA after the processing of 60000 traces collected above the 65nm-AES

CPA vs AOV : computation time

Mean Guessing Entropy obtained with CPA, AOV and MIA after the processing of 20000 traces of the DPAv2-AES, depending on the computation time

Mean Guessing Entropy obtained with CPA, AOV and MIA after the processing of 60000 traces collected above the 65nm-AES, depending on the computation time

Conclusion

AOV should be prefered to CPA :

- It provides similar results in case of a linear leakage
- It can outperform CPA in case of a non-linear leakage that is still on the means
- Its computational cost is similar

AOV remains less generic than MIA, but doesn't require the choice of hyperparameters, and is less time consuming.