Somewhat homomorphic encryption schemes:

which candidates and which expectations to have with these encryption schemes?

> Vincent MIGLIORE June 29th, 2015

Plan

Introduction to Somewhat-Homomorphic Encryption schemes

25

Hardware speedup

Definition of homomorphic encryption

Use case

In the medical area:

Management of electronic medical records (EMR) to perform statistical analysis privatly.

In the VOD services area:

Hided search of a video link in a database.

In the financial area:

Constant verification of financial data to prevent financial crisis without compromising privacy of investors and financial players.

DGA

DGA

Technological barriers

Technological barriers

Approximation of the speedup of Homomorphic multiplication algorithms
Co-processor architecture
Expected speedup

•
$$C \in Z_q[X]/f(X);$$

- $f(X) = X^n + 1$

L	$log_2(q)$	n
0	20	512
1	40	1024
3	80	2048
5	128	4096
10	392	8192
50	1225	32768

Technological barriers

Speedup of Homomorphic multiplication algorithms Co-processor architecture Expected speedup

$$C \in Z_q[X]/f(X);$$
$$-f(X) = X^n + 1$$

L	$log_2(q)$	n		
0	20	512		
1	40 1024			
3	80	2048		
5	128	4096		
10	392	8192		
50	1225	32768		

key generation	70 ms
encryption	34 ms
decryption	12 ms
homomorphic addition	0.8 ms
homomorphic multiplication	74 ms

Speedup the Homomorphic multiplication

Multiplication algorithms

- Classical multiplication (naive) - Complexity: $O(n^2)$
- Karatsuba multiplication
 - Complexity: $O(n^{1.58})$
- FFT multiplication
 - Complexity: $O(n, \log_2(n))$

First architecture

- Limited RAM reads/writes
- Limited hardware ressources

Speedup of Homomorphic multiplication Multiplication algorithms

$$A(x) = A_0(x) + A_1(x)x^{[n/2]}; B(x) = B_0(x) + B_1(x)x^{[n/2]};$$

$$C(x) = A(x).B(x)$$

	• 2 types of
Definition and use case	
Speedup of Homomorphic multiplication	
Multiplication algorithms	
Co-processor architecture	
Expected speedup	
	D-STICC 🤣 🗄 I R I S A

2 types of FFT:

• 2 types of FFT:

- Classical FFT
 - Need to fill with zeros $n \rightarrow 2, n$

Introduction to SHE schemes
Definition and use case
State of the art
Technological
barriers
Speedup of Homomorphic multiplication
Speedup of Homomorphic multiplication Multiplication algorithms
Speedup of Homomorphic multiplication Augorithms Co-processor architecture
Speedup of Homomorphic multiplication algorithms Co-processor architecture
Speedup of Homomorphic multiplication algorithms Co-processor architecture Expected speedup

• 2 types of FFT:

- Classical FFT
 - Need to fill with zeros $n \rightarrow 2.n$
- Negative Wrapped Convolution (NWC)
 - Reduction by $X^n + 1$
 - No need to fill with zero

DGA

14

iFFT

DGA

•
$$\frac{n}{2} log_2(n) + \frac{n}{4} + \frac{n}{4} log_2(n)$$

 $2xFFT$ Pointwise iFFT
multiplication

•
$$\frac{n}{m}\log_2(n) + \frac{n}{m} + \frac{n}{2m}\log_2(n)$$

• $\frac{3n}{2m}\log_2(n) + \frac{n}{m}$

Coefficients			
per	Karatsuba	FFT NWC	FFT
operation			
4	19683	7936	17408
8	6561	3968	8704
16	2187	1984	4352
32	729	992	2176
64	243	496	1088
128	81	248	544
256	27	124	272
512	9	62	136
1024	3	31	68

Coefficients			
per	Karatsuba	FFT NWC	FFT
operation			
4	19683	7936	17408
8	6561	3968	8704
16	2187	1984	4352
32	729	992	2176
64	243	496	1088
128	81	248	544
256	27	124	272
512	9	62	136
1024	3	31	68

Coefficients			
per	Karatsuba	FFT NWC	FFT
operation			
4	19683	7936	17408
8	6561	3968	8704
16	2187	1984	4352
32	729	992	2176
64	243	496	1088
128	81	248	544
256	27	124	272
512	9	62	136
1024	3	31	68

Second architecture

• Co-processor architecture:

- Limited bandwidth
- Limited hardware ressources

Impact on the FFT

Introduction to SHE schemes Definition and use case State of the art State of the art Technological barriers

Speedup of Homomorphic multiplication algorithms Co-processor architecture Expected speedup

Lab-STICC

 The first round of the FFT can be performed completely only if both polynomials are sent to the FPGA

$$\frac{3n}{2m}\log_2(n) + \frac{n}{m}$$

$$\rightarrow \frac{3n}{2m}(\log_2(n) - 1) + \frac{n}{m} + 3n$$

Impact on the Karatsuba

- Output coefficients can be pipelined.
- Scheduling of input/output coefficients.

Introduction to SHE schemes	•		n	, :		•	1	02	24
					/		/		(15)100
				-	o Jun	100	NO LE	INNO PE	aratsu
		m	<u>_</u>	\$0%	<u> </u>	Y,	atio (atio	
			Ope	eratio	ons				
イト		2	29538	10496	20480	0.355	0.693		
		4	14810	6784	12288	0.458	0.830		
		6 0	3338 7526	5547 4999	3557	0.558	1.097		
		10	6132	4557	7373	0.743	1,202		
		12	5231	4309	6827	0.824	1.305		
		14	4630	4133	6437	0.893	1.390		
		16	4191	4000	6144	0.954	1.466		
Considering of		18	3903	3897	5916	0.998	1.516		
Speedup of		20	3715	3814	5734	1.027	1.544		
Homomorphic		22	3567	3747	5585	1.050	1.566		
multiplication		24	3388	3643	5356	1.000	1581		
multiplication		28	3325	3602	5266	1.083	1.584		
		30	3271	3567	5188	1.090	1.586		
Multiplication		32	3230	3536	5120	1.035	1.585		
algorithms		34	3196	3509	5060	1.098	1.583		
		36	3180	3484	5006	1.096	1.574		
		38	3166	3463	4958	1.094	1.566		
		40	3154	3443	4915	1.092	1.558		
Co-processor		42	3138	3409	4010	1.003	1543		
architecture		46	3132	3395	4808	1.084	1.535		
		48	3126	3381	4779	1.082	1.529		
		50	3121	3369	4751	1.079	1.522		
Expected		52	3116	3358	4726	1.078	1.517		
Expected		54	3111	3347	4703	1.076	1.512		
speedup		56	3108	3337	4681	1.074	1.506		
		58	3106	3328	4661	1.071	1.501		
•		512	3071	3101	4160	1.010	1.355		
1								1	
				1	~ ~			10	
	0-ST	1	C				R	15	A
DGA				0	-	•			

•
$$n = 10224$$
;
m $4a^{5}$, b^{0} ,

$$log_2(q) = 40$$

Multipliers	Karatsuba	FFT NWC	Classical FFT
$\rightarrow 0$	×	*****	X
≈ 30	****	****	***
$ ightarrow \infty$	\approx	**	**

Future Work

Future Work

Future Work

Many thanks for your attention!

Vincent MIGLIORE