
Applications security in manycore platform:
from operating system to hypervisor

Mehdi Aichouch1, Clément Devigne2,

Guy Gogniat3, Maria Mendez3

1CEA, Saclay, 2LIP6, Jussieu, 3Lab-STICC, Lorient

TSUNAMY Project (ANR)

CryptArchi’2015, Leuven, Belgium - June 29th, 2015

Manycore platform for trusted computing

• Context of cloud
computing
 Many requests

requiring security
services

 Secure data
storage

• Need of high
performance and
high security
 Enhance

manycore
platforms with
cryptoprocessors

 Virtual machines
isolation

 Applications
isolation

2

Storage of
information

Secure data storage

Environment
Connected devices

Data computation
Trusted manycore

architecture

Secured memory
accesses

Secured client/server
request

Secured cloud

Trusted platform for secure execution

• Hundreds of clusters composed of

 Processing elements

 Cryptoprocessor

 Distributed memory

3

Local interconnect

CPU
CPU

I D

CPU
CPU

I D

CPU
CPU

I D

CPU

I D

Crypto

Proc.

MemoryNICDMA

TSAR platform

Which threats?

• Countermeasures depend on TCB (attack surface)

4

Menaces de
confidentialité et

d’intégrité

Dénis de

services

Providing wrong information

Stop reallocation

Stop request to peripheral

Behavioral modification

Access to scheduling information

Data copy on the physical memory

Read of access rights

Modification of the virtual page assignation

Modification of access rights

Denial of
service

Information

leakage

Unauthorized
read and/or write

of data in
memory

Monitoring

Allocation

Driver

Interrupt controller

Scheduler

Driver

Control of memory

access rights

Allocation

Control of memory access rights

Driver Data modification on physical memory

Hardware monitoring

Hardware allocation

Execution monitoring

Hardware interrupt controller

Hardware scheduler

Reset memory zone

Data ciphering and authentication

Data ciphering and
authentication

Modification of access rights
Control of memory

access rights

Threat Malicious element Action Countermeasure

Over - consumption of resources Process (Application) Software limitation

Read peripheral output register Process (Application) Register reset

Data ciphering and authentication

Software
countermeasure

Hardware
countermeasure

Software or hardware
countermeasure

Cryptographic
countermeasure

Main issues

• How to build a blind hypervisor?

• How to securely deploy virtual machines?

• How to securely map applications within one virtual
machine?

• TSUNAMY project addresses these issues relying on
TSAR manycore platform and ALMOS operating
system

 https://www-soc.lip6.fr/trac/tsar

 https://www-soc.lip6.fr/trac/almos

5

https://www-soc.lip6.fr/trac/tsar
https://www-soc.lip6.fr/trac/almos

Agenda

• Part1: Blind hypervisor in a nutshell

 Mehdi Aichouch

• Part2: Executing Secured Virtual Machines
within a Manycore Architecture

 Clément Devigne

• Part3: Secure application deployment

 Maria Mendez

6

Part1: Blind hypervisor in a nutshell

Mehdi Aichouch

Background

8

● Traditional computing systems

– Operating System deployed on bare hardware

– User applications installed on top of an operating system

Operating System

Hardware

Virtualization

• Hypervisor deployed on the
hardware

 provides virtual machine

• Virtual processor

• Virtual memory

• Virtual I/O devices

 manages a set of protected
and isolated virtual
machines

• Uses cases

 Multiple operating systems
deployed simultaneously on
the same hardware

 Run legacy OS/application on
new hardware

 Cost reduction through
resources sharing

9

Guest
OS1

Hypervisor

Guest
OS2

Guest
OS3

Hardware

Virtual
Machine

Hypervisor functionality

• Hypervisor

 First software to be deployed on the machine

 Has all execution privileges to control the hardware

10

CPU

Memory

MMU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Hypervisor

Hypervisor functionality

• Hypervisor

 Allocates hardware resources (processors, memory,
i/o devices) to virtual machines

11

CPU

VM1

Hypervisor

MMU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

VM2

Problem

• Hypervisor has access to virtual machines' memory
partitions

• If it is compromised by a malicious attacker

 e.g. BUG exploitation results in an escalation of privilege

• It can do everything including inspecting secret data

• Hypervisor can not be trusted

12

CPU
VM1

Hypervisor

MMU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

VM2

Blind Hypervisor

• Goal

 Guarantee the confidentiality and integrity of VM's content
even if Hypervisor not trusted

• Confidentiality means no read access permission

• Integrity means no write access permission

• Protection scope

 Software attacks from virtual machines and hypervisor are
avoided

 Do not address physical attacks

13

Blind Hypervisor

• Design

1. Prevent a hypervisor from accessing virtual machines memory
partitions

2. Virtual Machine content should be encrypted when stored on
a hard disk or retrieved from a network

3. Without affecting the original runtime performance

4. Rely on a set of hardware assisted techniques

• hardware intrusiveness trade-offs

14

Hardware Extension

• Secure Memory Management Unit
 Creates and isolates memory partitions for virtual machines

and hypervisor

 Prevent hypervisor from accessing virtual machines memory partitions
component that should be trusted

15

VM2

VM1

Hypervisor

MMU S-MMU

Memory

Virtual addresses in partition

Physical addresses in partition

Real addresses in
physical memory

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Hardware Extension

• Trusted Loader

 Decrypt/encrypt virtual machine content

 Load/store VM content from/to hard disk to/from memory

 Cyphering key accessible only by the trusted loader

16

VM2

VM1

Hypervisor

MMU S-MMU

Hard
disk

Trusted Loader

Memory

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Blind Hypervisor Functionality

• Hypervisor configures Secure-MMU

 After activation of secure-MMU, hypervisor can not access
VMs memory partitions

• Hypervisor commands Trusted Loader

 Decryption or Encryption of virtual machine content takes
places only during virtual machine load or store

• Hypervisor starts virtual machines

 Active virtual machine accesses only its memory partition

17

Blind Hypervisor features

• Hypervisor not trusted

• Able to guarantee security properties such as
confidentiality and integrity of virtual machines

• Do not impact performance

 Code and Data of active virtual machine are loaded in clear
text into memory

 No on-the-fly encryption of code and data required

• Implementation on the TSAR manycore architecture

 Please see details in the next presentation

18

Part2: Executing Secured Virtual Machines
within a Manycore Architecture

Clément Devigne

Objectives

• Example of a
TSUNAMY platform
with 3 virtual
machines deployed

• Each virtual
machine has an
exclusive IOC
channel.

• Each disk contains
a bootloader, the
kernel code and
user applications.

20

Context

• The hypervisor manages all the Virtual Machines
(VM)

• The hypervisor is blind (i.e. it is not able to access
VM resources after their configuration)

• VMs do not share any core or memory bank

• Three address spaces: virtual, physical and machine

21

TSUNAMY Architecture

• All clusters contain:

 4 MIPS cores with their first level caches

 1 second level (L2) cache

 2 internal peripherals: an interrupt
controller including timer functions
(XICU) and a DMA controller

 A local crossbar

 The Hardware Address Translator (HAT)

• The I/O cluster additionally
contains:

 A terminal controller (TTY)

 A hard-drive disk controller (IOC)

 A Programmable Interrupt
Controller (PIC)

22

Memory Management Unit

• A MMU generally uses a translation cache (called TLB)
to speed up address translation
 Non negligible hardware overhead, including the logic to manage

the TLB misses

 Slower to perform address translation because of the TLB misses
overhead

• The hypervisor must create the page table for the
memory allocated to a virtual machine and store it into
a memory space non accessible by itself nor any virtual
machine

• Translation with a page granularity (e.g. 4KB)
 Useful when virtual machines share memory banks

 but this is not within our hypothesis to physically isolate the
virtual machines

23

Hardware Address Translator

• HAT performs the translation from physical
addresses to machine addresses

• Configured once by the hypervisor at the start of an
operating system and placed behind each initiator in
the architecture

• HAT only needs topology information to perform
address translation

• HAT operates with a coarser granularity (cluster
granularity)

24

HAT: Overview

• Two types of addresses target

 module included in a cluster of the same virtual machine
(internal access)

 peripheral outside the virtual machine (external access)

25

Memory Space Distribution

26

HAT: Internal Accesses Mechanism

• Most significant bits
(MSB) define the
cluster coordinates
(X; Y)

• The address
translation consists
only in changing the
MSB

27

HAT: External Accesses Mechanism

• 1 bit defines if the
request targets a
peripheral (DEV bit)

• 2 tables into the HAT
handle peripheral
accesses

 Base Physical
Address table

 Mask table

28

Preliminary results

29

• Average overhead : < 3%

Part3: Secure application deployment

Maria Mendez

Global overview

31

MV 1MV 2

MV 3MV 4

M

V

5

Physical cluster

TSAR Architecture

Trusted Virtual Machines (VM)

Local interconnect

CPU
CPU

I D

CPU
CPU

I D

CPU
CPU

I D

CPU

I D

Crypto

Proc.

MemoryNICDMA

Inside a trusted virtual machine

32

TSAR Architecture

Sensitive applications

Sharing resources

App0

App1

App2

App4

App3

Are the applications securely deployed?

Local interconnect

CPU

I D

CPU

I D

CPU

I D

CPU

I D

Crypto

Proc.

MemoryNICDMA

Physical cluster

Threat model

33

Sharing resources
• Denial of Services attacks (DoS)

• Leakage of Information attacks (Communication and Cache Side-Channel
Attacks (SCA))

Sensitive applications

Physical cluster

App0

App1

App2

App4

App3

J. Demme and S. Sethumadhavan. Side-channel vulnerability metrics: Svf vs . csv. In WDDD, 2014

Y. W. and G. E. Suh. Efficient timing channel protection for onchip networks. In NOCS 12 Proceedings of the 2012 IEEE/ACM Sixth International Symposium on

Networks-on-Chip, pages 142–151, 2012

M. J. Sepulveda et al. Protection for SoC Time-Driven Attacks," /Embedded Systems Letters, IEEE/ , vol.7, no.1, pp.7,10, March 2015

Local interconnect

CPU

I D

CPU

I D

CPU

I D

CPU

I D

Crypto

Proc.

MemoryNICDMA

Physical isolation

34

Objective: Physically isolate sensitive applications in order to avoid

Cache SCA and DoS attacks

App0

App1

App2

App4

Sensitive applications

App3

Physical cluster

Local interconnect

CPU

I D

CPU

I D

CPU

I D

CPU

I D

Crypto

Proc.

MemoryNICDMA

Physical isolation implementation

35

Monitoring

New user application

mapping

Task (thread, fork)

mapping

Memory allocation

(level 2 cache)

Scheduling

ALMOS services extension

ALMOS. https://www-soc.lip6.fr/trac/almos

Physical isolation implementation

36

ALMOS services extension

Monitoring

New user application

mapping

Task (thread, fork)

mapping

Memory allocation

(level 2 cache)

Scheduling

Monitoring

Distributed Quaternary Decision Tree (DQDT) adapted for crypto-

processors and secure zones

M M M M M

T T T T T

U U U U U

0 1 2 3 4
C

0

Tcy Tcy

Ucy Ucy

S

UcyUcy

Tcy Tcy Tcy

Ucy

ALMOS. https://www-soc.lip6.fr/trac/almos

C
1

C
2

C
0

C
2

C
1

C
0

M : Physical pages number

T : Threads number (Runnable)

U : CPU utilization

Tcy : Crypto tasks number

Ucy : Crypto-processor utilization

S : Secure zone ID

Physical isolation implementation

37

Monitoring

New user application

mapping

Task (thread, fork)

mapping

Memory allocation

(level 2 cache)

Scheduling

Monitoring

New user application

mapping

Idle cluster

Active cluster

Secure zone cluster

New secure zone creation service

Knowing the maximum

parallelism of an application

ALMOS services extension

C
2

C
1

C
0 C

1

C
2

C
0

Searching for contiguous

physical resources enough

Statically creation

of a secure zone

ALMOS. https://www-soc.lip6.fr/trac/almos

Physical isolation implementation

38

Monitoring

New user application

mapping

Task (thread, fork)

mapping

Memory allocation

(level 2 cache)

Scheduling

Monitoring

New user application

mapping

Task (thread, fork)

mapping

Memory allocation

(level 2 cache)

With the mechanism of secure zones, the exploration zone, for

physical as well as for logical isolated application is reduced

and bounded by the entire platform

ALMOS services extension

Idle cluster

Active cluster

Secure zone cluster
C

2

C
1

C
0 C

1

C
2

C
0

Before physical isolation mechanismsAfter physical isolation mechanisms

Exploration zone

ALMOS. https://www-soc.lip6.fr/trac/almos

OS exploration tool

• Models based exploration tool

39

Applications
model

Architecture
model

Performance
model

Performance metrics

Security metrics

OS exploration tool

Scheduling
Monitoring
Secure zone creation
New application mapping
Task mapping (thread, fork)
Memory allocation

System
developer

Performance
results

Experimental results

40

 Experimental protocol

Synthetic applications

Evaluation on 2x2 and 4x4 physical clusters architectures, each physical cluster containing 4 CPUs

1. Performance overhead evaluation of atomic ALMOS extended services
normalized by original ALMOS services

+28% overhead

-33% overhead

-21% overhead

+10% overhead

Experimental results

41

2. Comparison between original and security enhanced ALMOS services with no
architecture load.

A. Performance (total execution time) of an
application intended to be physically isolated

Experimental results

42

B. Performance of the security enhanced ALMOS services

Isolation mechanisms depending Total execution time depending

4x4 clusters

architecture

Experimental results

43

3. Comparison between original and security enhanced ALMOS services
according to the number of applications running on the platform (one single
application isolated on a 4x4 clusters architecture)

A. ALMOS services performance B. Execution time of non isolated applications

+45%

overhead

+26% overhead

-45%

-8%

-13,5%

-12,7%

Conclusion

• The TSUNAMY project addresses the problem of
secure handling of personal data and privacy in
manycore architectures

• It proposes a solution to execute many independent
applications in parallel, safely and ensuring respect
for the privacy of users

• It proposes mechanisms for logical and physical
isolation to ensure execution of partitioned
applications

• It develops strategies for dynamically distributing
applications on a manycore architecture

44

Applications security in manycore platform:
from operating system to hypervisor

Mehdi Aichouch1, Clément Devigne2,

Guy Gogniat3, Maria Mendez3

1CEA, Saclay, 2LIP6, Jussieu, 3Lab-STICC, Lorient

TSUNAMY Project (ANR)

CryptArchi’2015, Leuven, Belgium - June 29th, 2015

Experimental results

46

2. Comparison between original and security enhanced ALMOS services with no
architecture load.

B. Resources utilization rate according to
isolated scenarios

A. Performance (total execution time) of an
application intended to be physically isolated

Experimental results

47

4. Comparison between original and security enhanced ALMOS services
according to the number of applications physically isolated, 20 applications
running on the 4x4 clusters platform

-13%
+5% -12,4%

+45% +107% +121%

