
Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
1/20

Reversible Denial-of-Service by
Locking Gates Insertion for
IP Cores Design Protection

Brice Colombier
∗
, Lilian Bossuet

∗
, David Hély

+

∗
Laboratoire Hubert Curien

Université Jean Monnet

Saint-Étienne — France

+
LCIS, Grenoble Institute of Technology

Valence — France

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
2/20

Outline

1 Context and state-of-the-art

2 Logic locking

3 Implementation results

4 Conclusion

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Context and state-of-the-art 3/20

Design-and-reuse paradigm

IP1 IP2 IP3

IP portfolio

IP core
designer

System
integrators

Problem
The designer cannot control

how many times the IP is used.

Overusing,

Illegal copying.

One solution
Make the IP unusable unless it

has been previously activated.

⇒ Illegal copies are useless.

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Context and state-of-the-art 4/20

Logic masking

In 2008, Roy et al.
1

proposed to randomly insert XOR/XNOR gates

in the netlist.

G

K
Gmod

G GmodG

K = 1K = 0

G

Masked

1Roy, Koushanfar, Markov EPIC: Ending Piracy of Integrated Circuits

Design, Automation and Test in Europe, 2008

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Context and state-of-the-art 5/20

Logic masking

In 2013, Rajendran et al.
2

improved the node selection method.

Fault analysis-based node selection
Requires a fault simulator,

Computationally expensive.

Security flaw
There is a gradient towards the correct key.

A hill climbing a�ack
3

can be mounted.

2Rajendran, Zhang, Rose, Pino, Sinanoglu, Karri Fault analysis-based logic encryption IEEE Transactions on

Computers, 2013

3Plaza, Markov Protecting Integrated Circuits from Piracy with Test-aware Logic Locking International Conference on

Computer Aided Design, 2014

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Context and state-of-the-art 5/20

Logic masking

In 2013, Rajendran et al.
2

improved the node selection method.

Fault analysis-based node selection
Requires a fault simulator,

Computationally expensive.

Security flaw
There is a gradient towards the correct key.

A hill climbing a�ack
3

can be mounted.

2Rajendran, Zhang, Rose, Pino, Sinanoglu, Karri Fault analysis-based logic encryption IEEE Transactions on

Computers, 2013

3Plaza, Markov Protecting Integrated Circuits from Piracy with Test-aware Logic Locking International Conference on

Computer Aided Design, 2014

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Context and state-of-the-art 6/20

Protecting IP cores by inserting extra gates

Where are we?

Insertion methods are expensive,

Security level is very low.

Each has its role:
Security : relies on a cryptographic primitive.

Disabling : specific masking/locking module.

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 7/20

Outline

1 Context and state-of-the-art

2 Logic locking

3 Implementation results

4 Conclusion

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 8/20

What is logic locking?

0
0

Principle
Propagating a locking value through a sequence of nodes.

Forcing an internal node locks a primary output.

Condition
For all the nodes in the sequence (orange nodes): Vforced ∈ Vlocks

(The nodes in the sequence are forced to a logic value that locks
the following logic gate)

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 8/20

What is logic locking?

0
0

?

Principle
Propagating a locking value through a sequence of nodes.

Forcing an internal node locks a primary output.

Condition
For all the nodes in the sequence (orange nodes): Vforced ∈ Vlocks

(The nodes in the sequence are forced to a logic value that locks
the following logic gate)

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 8/20

What is logic locking?

0
0

1

Principle
Propagating a locking value through a sequence of nodes.

Forcing an internal node locks a primary output.

Condition
For all the nodes in the sequence (orange nodes): Vforced ∈ Vlocks

(The nodes in the sequence are forced to a logic value that locks
the following logic gate)

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 8/20

What is logic locking?

0
0

1
1

Principle
Propagating a locking value through a sequence of nodes.

Forcing an internal node locks a primary output.

Condition
For all the nodes in the sequence (orange nodes): Vforced ∈ Vlocks

(The nodes in the sequence are forced to a logic value that locks
the following logic gate)

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 8/20

What is logic locking?

0
0

1
1

Forcing this node...

...locks this output

Principle
Propagating a locking value through a sequence of nodes.

Forcing an internal node locks a primary output.

Condition
For all the nodes in the sequence (orange nodes): Vforced ∈ Vlocks

(The nodes in the sequence are forced to a logic value that locks
the following logic gate)

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 9/20

Which node should be forced ?

1st step: Build a graph from the netlist.

G1

G2

G3

G4

G9

 G8

G5

G6

 G11

 G14

 G13
G1

G2

G3

G4

G5

G6

G8
AND

AND

G9

G10

G11

G13

G14

OR

 OR

NAND

NAND

 AND

 AND

 NOR

 NOR

NAND

 NAND

G10
G12

G12
NOT

G7
G7

Conversion
Nodes → Edges

Gates → Vertices

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 10/20

Graph labelling

2nd step: Label vertices with Vforced and Vlocks values.

Labelling
Vforced depends on the preceding logic gate.

Vlocks depends on the following logic gate.

G1
AND OR

G2
AND NAND

G3
OR NOT

G4

G5
NOR NAND

G6

G7

OR

Node Vforced Vlocks

G1 0 1

G2 0 0

G3 1 ∼ Vlocks(G4)

G5 0 {0, 1}

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 11/20

Graph simplification

3rd step: Delete incoming edges of nodes for which

Vforced /∈ Vlocks. Those nodes cannot propagate the locking value.

G1

G2

G3

G4

G5

G6

G8
AND

AND

G9

G10

G11

G13

G14

OR

 OR

NAND

NAND

 AND

 AND

 NOR

 NOR

NAND

 NAND

G12
NOT

G7 G1

G2

G3

G4

G5

G6

G8
AND

AND

G9

G10

G11

G13

G14

 AND

 AND

 NOR

 NOR

NAND

 NAND

G12

G7

Original graph Simplified graph

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 12/20

Graph cleaning

4th step: Delete connected components that contain no output.

G1

G2

G3

G4

G5

G6

G8
AND

AND

G9

G10

G11

G13

G14

 AND

 AND

 NOR

 NOR

NAND

 NAND

G12

G7 G1

G2

G8
AND

AND

G9

G11

G13

G14

 AND

 AND

 NOR

 NOR

NAND

 NAND

G12

G7

Simplified graph Cleaned graph

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 13/20

Nodes selection

In the disconnected final graph, which nodes should be locked?

G2 G3 G4

G7

G8

G6G5

G9 G10

G1

G2

G7

G8

G6G5

G9 G10

G1

G3

G4

G5

G7 G8 G9

G4

G2

G3

G6

G1

One source vertex

Multiple source vertices Multiple source vertices

not all outputs spanned

Select the source

vertex.

Select the furthest node

spanning all the

outputs.

Sort the nodes w.r.t to

the number of outputs

they span and select

them greedily.

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 13/20

Nodes selection

In the disconnected final graph, which nodes should be locked?

G2 G3 G4

G7

G8

G6G5

G9 G10

G1

G2

G7

G8

G6G5

G9 G10

G1

G3

G4

G5

G7 G8 G9

G4

G2

G3

G6

G1

One source vertex Multiple source vertices

Multiple source vertices

not all outputs spanned

Select the source

vertex.

Select the furthest node

spanning all the

outputs.

Sort the nodes w.r.t to

the number of outputs

they span and select

them greedily.

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 13/20

Nodes selection

In the disconnected final graph, which nodes should be locked?

G2 G3 G4

G7

G8

G6G5

G9 G10

G1

G2

G7

G8

G6G5

G9 G10

G1

G3

G4

G5

G7 G8 G9

G4

G2

G3

G6

G1

One source vertex Multiple source vertices Multiple source vertices

not all outputs spanned

Select the source

vertex.

Select the furthest node

spanning all the

outputs.

Sort the nodes w.r.t to

the number of outputs

they span and select

them greedily.

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Logic locking 14/20

Locking gates insertion

So far, we have:

list of nodes to lock,

associated Vlocks values.

G1

G2

G8
AND

AND

G9

G11

G13

G14

 AND

 AND

 NOR

 NOR

NAND

 NAND

G12

G7

Vlocks = 0 : add AND gate

Vlocks = 1 : add OR gate

G1

G2

G3

G4

G9

 G8

G5

G6

 G11

 G14

 G13

G10
G12

G7

G2

G3

G4

G1'

G9

 G8

G5

G6

 G11

 G14

 G13

G10 G12'

G7
K1

G1

G12

K2

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Implementation results 15/20

Outline

1 Context and state-of-the-art

2 Logic locking

3 Implementation results

4 Conclusion

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Implementation results 16/20

Area overhead

Overhead metric: percentage of locking gates to add.

Implemented on ITC’99 benchmarks (1k to 225k logic gates)

103 104 105

#logic gates

0

1

2

3

4

5

6

Lo
g
ic

 r
e
so

u
rc

e
s

o
v
e
rh

e
a
d
 (

%
)

2.9

Average resources overhead

∼ 2x smaller than logic masking (+5.7%)

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Implementation results 17/20

Analysis time

Benchmark

#logic Fault analysis-based Graph analysis-based

gates logic masking
2

logic locking

c432 160 20min 0.03s

c7552 3512 4h30min 0.87s

b19_C 225k X 1h15min

103 104 105

#logic gates

0

5000

10000

15000

A
n
a
ly

si
s

ti
m

e
 (

s)

Graph analysis-based
logic locking

Fault analysis-based
logic masking

2Rajendran, Zhang, Rose, Pino, Sinanoglu, Karri Fault analysis-based logic encryption IEEE Transactions on

Computers, 2013

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Implementation results 18/20

Security margin

In the final graph, all nodes are available for logic locking.

c2
67

0

c3
54

0

c5
31

5

c6
28

8

c7
55

2

b1
4_

1_
C

b1
5_

C

b1
4_

C

b1
5_

1_
C

b2
1_

1_
C

b2
0_

1_
C

b2
0_

C

b2
1_

C

b2
2_

1_
C

b2
2_

C

b1
7_

C

b1
7_

1_
C

b1
8_

1_
C

b1
8_

C

b1
9_

1_
C

b1
9_

C
0

5

10

15

20

25

30

R
e
so

u
rc

e
s

o
v
e
rh

e
a
d
 (

%
)

Max.
Min.

More nodes can be forced to increase locking strength.

The designer tunes the resources overhead/locking strength ratio.

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Conclusion 19/20

Outline

1 Context and state-of-the-art

2 Logic locking

3 Implementation results

4 Conclusion

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Conclusion 20/20

Conclusion

Graph analysis-based logic locking is a

powerful way to make the circuit unusable,

The induced resources overhead is low,

Computationally e�icient analysis makes

EDA integration simple,

Logic masking/locking alone is not secure,

A cryptographic primitive is necessary for security.

�estions

?

All Python scripts are available on the SALWARE project webpage
4
.

4

h�p://www.univ-st-etienne.fr/salware/FOGP.html

Reversible Denial-of-Service by Locking Gates Insertion for IP Cores Design Protection
Conclusion 20/20

Conclusion

Graph analysis-based logic locking is a

powerful way to make the circuit unusable,

The induced resources overhead is low,

Computationally e�icient analysis makes

EDA integration simple,

Logic masking/locking alone is not secure,

A cryptographic primitive is necessary for security.

�estions

?

All Python scripts are available on the SALWARE project webpage
4
.

4

h�p://www.univ-st-etienne.fr/salware/FOGP.html

