Pipeline Implementation of ELmD, COPA and OTR

Cuauhtemoc Mancillas López and Lilian Bossuet

Hubert Curien Laboratory UMR CNRS 5516, Jean Monnet University, Saint-Etienne, France.

CAESAR Competition

Competition for Authenticated Encryption: Security, Applicability, and Robustness

- The CAESAR selection committee will select a portfolio of algorithms.
- Would be separate portfolios for software, hardware and lightweight.
- The process is like eStream competition for Stream Ciphers.

Submissions

- Based on Block Ciphers.
- Based on Stream Ciphers.
- Specific Constructions.
- Based on Sponge Functions.

Preliminaries

ELmD, COPA and OTR

Implementation

Results and Conclusions

Finite Fields

We shall often treat n bit binary strings as elements of $GF(2^n)$.

Elements in $\{0,1\}^n$ can be seen as polynomials of the form

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$
.

Finite Fields

We shall often treat n bit binary strings as elements of $GF(2^n)$.

Elements in $\{0,1\}^n$ can be seen as polynomials of the form

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$
.

For $X, Y \in \{0, 1\}^n$,

- ▶ Addition in the field: $X \oplus Y$, realized by bitwise xor.
- Multiplication: XY, realized by ordinary polynomial multiplication followed by reduction using a fixed n degree irreducible polynomial.

Finite Fields

An important operation on finite fields is *xtimes*.

For $L \in GF(2^n)$, by xA or $2 \cdot L$, we mean the multiplication of the monomial x with the polynomial A followed by a reduction using the irreducible polynomial.

This does not amount to a multiplication, can be easily done using a shift and a conditional xor.

Block-Ciphers

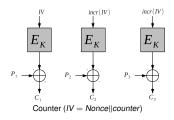
Definition

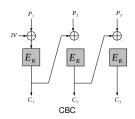
▶ Let n be the block length then the block cipher can be seen as a function

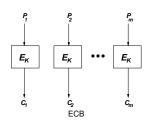
$$E: \{0,1\}^n \times K \to \{0,1\}^n$$

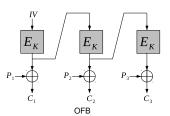
- ▶ Denoted by $E(K, M) = E_K(M)$.
- ► For each K, E_K must be a permutation. So, each E_K () has an inverse such that

$$D_K(E_K(M)) = M$$


A secure block cipher is considered to be a Strong Pseudo Random Permutation (SPRP).


Block ciphers can encrypt only messages if n-bit size


Modes of Operation


- Privacy Only.
- Message Authentication Codes (MAC).
- Authenticated Encryption (with Associated Data).
- Tweakable Enciphering Schemes
- On-line Ciphers.

Classical Modes of Operation

Authenticated Encryption with Associated Data

Definition

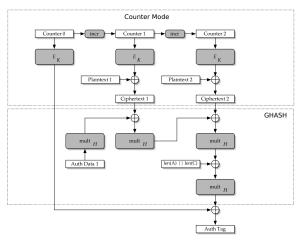
A AEAD is a function $\Psi = \mathcal{K} \times \mathcal{N} \times \mathcal{H} \times \mathcal{M} \rightarrow \mathcal{M} \times \mathcal{T}$

- K is key space, N nonce space, T tag space, M is message space and H is the associated data space.
- They provide authentication and privacy.
- Authentication is on message and associated data.
- ▶ They are not length preserving. Ciphertext is a pair C, τ where τ is a tag for authentication.

Security of Authenticated Encryption

Let's Ψ be a AE, it offers privacy:

$$\mathbf{Adv}_{\Psi}^{\mathit{AE-priv}}(\mathcal{A}) = \left| \mathsf{Pr} \Big[\mathcal{K} \xleftarrow{\$} \mathcal{K} : \mathcal{A}^{\Psi_{\mathcal{K}}(.,.)} \Rightarrow 1 \Big] - \mathsf{Pr} \Big[\mathcal{A}^{\$(.,.)} \Rightarrow 1 \Big] \right|$$

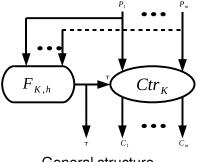

DAE is secure when $\mathbf{Adv}_{\Psi}^{DAE-priv}(\mathcal{A})$ is small for all efficient adversaries. It offers authentication:

$$\mathsf{Adv}_{\Psi}^{AE-auth}(\mathcal{A}) = \mathsf{Pr}[\mathcal{A}^{\Psi_{\mathcal{K}}(.,.,.)} \text{ forges }]$$

If $\mathbf{Adv}_{\Psi}^{DAE-auth}(\mathcal{A})$ is small, this signify that it must hard for an adversary to create a valid ciphertext.

General Constructions

Combining an IV-based encryption scheme and a Message Authentication Code:


Galois Counter Mode

IV misuse

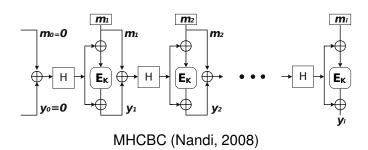
- It must be different for each message.
- Unpredictable.
- Implementers and protocol designers often supply an incorrect IV: constant or counter.
- Privacy fails when IV is repeated.
- Maintain IV is a hard task.

IV misuse-resistant

Deterministic Authenticated Encryption (Rogaway and Srimpton 2006)

General structure

Two passes construction. For example SIV.


Something in Between

On-line cipher

$$\mathcal{E}: \mathcal{K} \times (\{0,1\}^n)^+ \to (\{0,1\}^n)^+$$

- It is a permutation on every block of n bits.
- ▶ Its output is same for a common prefix. The first |M| bits of $\mathcal{E}_K(M||N)$ and $\mathcal{E}_K(M||N')$ are the same.

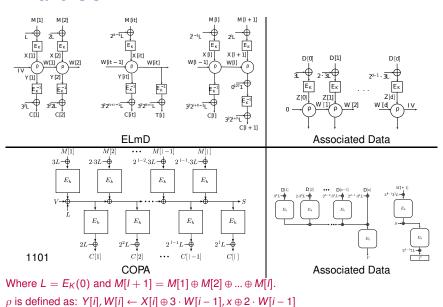
On-line Encryption

H is an AXU-Function

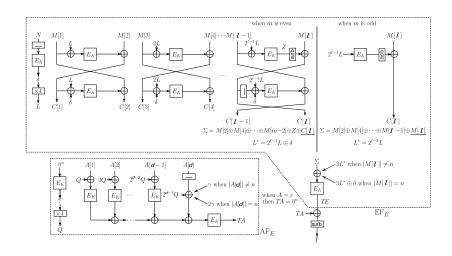
We implemented three constructions submitted to CAESAR.

- On-line
 - COPA (Andreeva, 2014)
 - ELmD (Datta and Nandi, 2014)
- ► IV-Based:
 - OTR (Minematsu, 2014)

Why

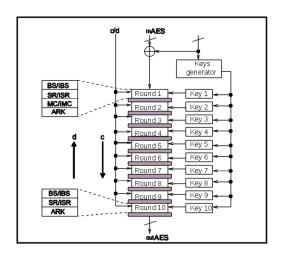

We implemented three constructions submitted to CAESAR.

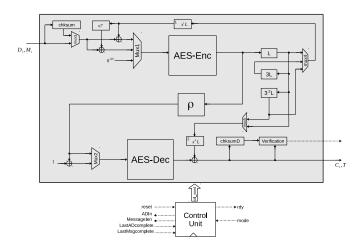
- On-line
 - COPA (Andreeva, 2014)
 - ELmD (Datta and Nandi, 2014)
- IV-Based:
 - OTR (Minematsu, 2014)


Why

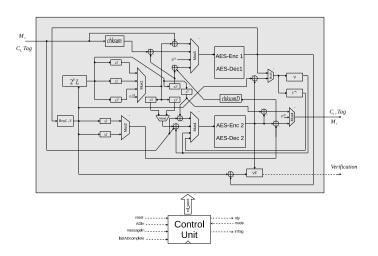
- Pipelineable
- High speed applications

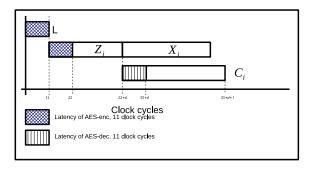
ELmD and COPA


OTR


Design Decisions

- Design optimized for FPGAs with 6 input LUTS (Virtex 5, Spartan 6, etc).
- Use separated AES-Encryption and AES-Decryption cores.
- Optimize for speed.


AES architecture


Hardware Architecture for ELmD

Hardware Architecture for COPA

Operations in the time for ELmD

Results

Mode	Area Slices	Frequency (MHz)	Latency clock cycles	Throughput
ELmD	5225	234.64	35 + #D	30.03
COPA	10391	230.87	61 + #D	29.55
OTR	4925	296.28	25 + #D	37.92
AES-GCM* Virtex 5	4770	311	-	36.92
AES pipelined encryption	2190	315.56	10	40.39
AES pipelined decryption	2360	239.34	10	30.63

^{*}Abdellatif et al. 2014.

Conclusions

- ELmD saves almost 50% of logic resources used in comparison with COPA.
- OTR is competitive with GCM.
- ► ELmD and COPA use more resources than GCM, but the security that they offer is stronger.
- There are more possibilities to exploit the parallel and pipeline properties of these algorithms.

Thanks for your attention

Questions?