One Core Fit All: Towards Merging block ciphers on FPGA

João Carlos C. Resende Shivam Bhasin Francesco Regazzoni Rica

Ricardo Chaves

Instituto Superior Técnico / INESC-ID

A Dual CLEFIA & AES Cipher Core on FPGA

- Cryptographic Engine
 - Circuit capable of applying cipher(s)
- Our objective:
 - To create a multi algorithm cryptographic engine

- In this work:
 - To create an efficient and compact cryptographic engine supporting CLEFIA and AES.

SFRPFI

inesc id

RC6

TwoFish

KASUMI

The CLEFIA Block Cipher inescid Isboa P0 P1 P2 P3 New 128-bit block cipher by Sony Corporation WK0 → WK1 -(Shirai et al. 2007) CIPHER Lightweight cipher RK [RK[i+ ISO/IEC 23132-2 (2012) Strong against Linear and Differencial ATKs ۲ 18, 22 or 26 iterative rounds • WK2 WK3 C0 C1 C2 C3

The AES Block Cipher

- Official NIST standard since 2001
 - FIPS 197

TÉCNICO LISBOA

- 128-bit block cipher
- Shift Rows structure
- Input keys of 128,192 or 256 bits
- 10, 12 or 14 iterative rounds

Instituto Superior Técnico / INESC-ID
 One Core Fit All: Towards Merging bloc

AES vs. CLEFIA

- AES Cipher
 - Symmetric 128-bit block cipher
 - <u>Substitution-Permutation</u> <u>Structure</u>
 - Whitening Keys
 - AddRoundKey
 - SubBytes (1x S-Box)
 - MixColumns (1x matrices)
 - <u>ShiftRows</u>
 - 10, 12, 14 Rounds

- CLEFIA Cipher
 - Symmetric 128-bit block cipher
 - Feistel Structure
 - Whitening Keys
 - AddRoundKey
 - S-funtions (2x S-Box)
 - Diffusion Matrix (2x matrices)
 - Feistel Word Swap&Add
 - 18, 22, 28 Rounds

Instituto Superior Técnico / INESC-ID

Outline

Introduction & Motivation

- Main Concepts
- □ The CLEFIA Block Cipher
- □ The AES Block Cipher

State of the Art in FPGA Implementations

- Proposed Architecture: Description and Implementation
 - Combining Solutions
 - Improving Solution
- Result Analysis
 - □ Resource requirements and performance
 - □ Comparison with related State of the Art
- Conclusions

State of the Art in AES implementations

- Chodowiec and Gaj [2003]
 - ShiftRows performed by addressable Shift Register
 - SubBytes performed by BRAM-based S-Boxes
 - MixColumns performed by logic

ISBOA

State of the Art in AES implementations

Rouvroy et al. [2004]

ISBOA

8

- ShiftRows performed by Shift Register
- SubBytes & MixColumns performed by BRAM-based T-Boxes
- Extra InvS-Box in BRAM for decryption
- Embedded Key Scheduler

State of the Art in AES implementations

- Chaves et al. [2006]
 - Multiplexed ShiftRows operation
 - SubBytes & MixColumns by BRAM based T-Boxes

Improved Last Round

MixC	$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix}$	$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix}$	InvMixC
------	--	--	---------

$$\begin{split} &\mathsf{SB}(\mathsf{a}_i) = \mathsf{02} \; \mathsf{SB}(\mathsf{a}_i) \bigoplus \mathsf{01} \; \mathsf{SB}(\mathsf{a}_i) \bigoplus \mathsf{01} \; \mathsf{SB}(\mathsf{a}_i) \bigoplus \mathsf{03} \; \mathsf{SB}(\mathsf{a}_i) \\ &\mathsf{ISB}(\mathsf{a}_i) = \mathsf{0E} \; \mathsf{ISB}(\mathsf{a}_i) \bigoplus \mathsf{09} \; \mathsf{ISB}(\mathsf{a}_i) \oplus \mathsf{0D} \; \mathsf{ISB}(\mathsf{a}_i) \oplus \mathsf{0B} \; \mathsf{ISB}(\mathsf{a}_i) \\ \end{split}$$

State of the Art in CLEFIA implementations

- Proença and Chaves [2011]
 - Proper scheduling allows for fast folded rounds
 - First compact implementation of CLEFIA in FPGA
 - F-functions performed through TBoxes

Proposed Architecture: Methodology

linesc id

- Proposed Solution:
 - Combine the most compact State of the Art solutions
 - Improve efficiency through:
 - Resource sharing
 - Improved Scheduling
 - Improved performance in FPGA

16/04/2015

ISBOA

13

One Core Fit All: Towards Merging block ciphers on FPGA

16/04/2015

One Core Fit All: Towards Merging block ciphers on FPGA 14

16/04/2015

AES: P0: P1: P2: P3

- Initial Whitening Keys
- Shift Register for AES
- BRAM based T-Boxes
- Feedback and Forwarding
- CLEFIA Feistel Word Swap

(by Proença et al.)

- Combining State of the Art Solutions
 - Initial Whitening Keys
 - Shift Register for AES & CLEFIA

(this work)

- BRAM based T-Boxes
- Feedback and Forwarding

Combining State of the Art Solutions

- Initial Whitening Keys
- Shift Register for AES & CLEFIA
- BRAM based T-Boxes
- Feedback and Forwarding
- CLEFIA Round Key
- CLEFIA Feistel Word Swap
- Reduced Output Stage (LUT6)

Improving and Implementing

- Shift Register for AES & CLEFIA
- Reduced Output Stage
- Reducing Critical Path
 - 3 levels of logic

Improving and Implementing

- Shift Register for AES & CLEFIA
- Reduced Output Stage
- Reducing Critical Path
 - 2 levels of logic (LUT4)

lisboa

- Compact CLEFIA & AES
 Dual Cipher FPGA core.
 - Shift Register for AES & CLEFIA
 - Reduced Output Stage
 - Reduced Critical Path
 - Total of 160 LUTs + 2 BRAMs

• State of the Art Comparison (single block)

		Round Structure	Device	Resources		Throughput	Efficiency
				Slices	BRAMs	[Gbps]	[Mbps/S]
Kryjak		Unrolled	V5	2479	0	1,188	0,48
Proença		Rolled(128b)	V5	170	4+1	1,707	10,04
		Rolled(32b)		86	2+1	1,301	15,13
Ours	CLEFIA	Rolled(32b)	V5	123	2+1	1,073	8,72
	AES					0,85	6,91
	CLEFIA		V6	115		1,012	8,80
	AES					0,802	6,97
Chaves		Rolled(32b)	V5	407	8+2	2,427	5,96
Drimer		Rolled(32b)	V5	107	2+1	0,88	8,22
				212	2+1	0,88	4,15
Liu		Unrolled	V5	3579	0	2,305	0,64
			V6	3121		3,206	1,03
Bulens		Rolled(128b)	V5	400	0	1,07	2,67
				550		1,07	1,94

Conclusions

- Compact Dual-Cipher CLEFIA & AES FPGA Core
 - 2 Algorithms
 - 123 Slices+3 BRAMs
 - Max. Freq.: 352 MHz
- Througputs
 - AES: 0,8 Gbps (33% less than best rolled implementation)
 - CLEFIA: 1 Gbps (no alternative surpasses the 2Gbps mark)
- Efficiency
 - AES: Best efficiency with 6,91 Mbps/Slice
 - CLEFIA: 8.72 Mbps/Slice (42% less than best fully dedicated)

inesc id

Future work

The CAMELLIA Block Cipher

CAMELLIA

LISBOA

23

- Feistel cipher
- 2 x 64 bit datapath
- Main operations:
 - Sbox, XORs, and permutations

One Core Fit All: Towards Merging block ciphers on FPGA

inesc id

M₍₁₂₈₎

From: http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/06_01espec.pdf

João CC Resende, et al.

Future work

The PRESENT Block Cipher

PRESENT plaintext key register Ligtweight block cipher addRoundKey _ Block Size 64 bits sBoxLayer update pLayer - Main operations: Sbox, XORs, and permutations • sBoxLayer update pLayer ΨΨ addRoundKey S \mathbf{S} S S S S S S S S S S S S S S ciphertext **→** k_{i+1} ₽₽₽₽₽₽₽₽ S S S S S S S S S S S S S S S S

TÉCNICO Instituto Superior Técnico / INESC-ID

_ISBOA

24 One Core Fit All: Towards Merging block ciphers on FPGA