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Motivation

Consolidate state-of-the-art about optimal distinguisher with a
deeper look an the probabilities to estimate
Perceived Information (PI) : information-theoretic metric
quantifying the amount of leakage
Show that PI is related to maximizing the success rate through the
Maximum a posteriori probability
Use the maximum likelihood to derive the template attack
Experiments : If probabilities are known should they be used or
estimated on-the-fly ?
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Notations

Secret key k∗ deterministic but unknown
m independent measurements x = (x1, ..., xm) and independent
and uniformly distributed inputs t = (t1, ..., tm)

leakage model y(k) = ϕ(f(k, t)), where ϕ is a device specific
leakage function and f maps the inputs to an intermediate
algorithmic state.
x = y(k∗) + n with independent noise n.
P exact probability profiled device
P̂ for an estimation offline (when profiling)
P̃ estimated online on-the-fly (when attacking)
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Assumptions

The leakage model follows the

Markov condition
The leakage x depends on the secret key k only through the computed
model y(k). Thus, we have the Markov chain :

(k, t)→ y = ϕ(f(t, k))→ x.

This assumption is related to the EIS assumption [SLP05].
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Perceived information

Idea [RSVC+11]

Metric quantifying degraded leakage models
Generalization of mutual information
Testing models against each other, e.g., from the true distribution
against estimations

Ideal case

the distribution P is known
PI is MI

MI(K;X,T ) = H(K) +
∑

k P(k)
∑

t P(t)
∑

x P(x|t, k) log2 P(k|t, x)
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Perceived information

Profiled case

the distribution is known P
test a profiled model P̂ against P

PI(K;X,T ) = H(K) +
∑

k P(k)
∑

t P(t)
∑

x P(x|t, k) log2 P̂(k|t, x)

Real case

the distribution is unknown P
test a profiled model P̂ against an online estimated model P̃

P̂ I(K;X,T ) = H(K) +
∑

k P(k)
∑

t P(t)
∑

x P̃(x|t, k) log2 P̂(k|t, x)
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Maximum a posteriori probability

MAP
The optimal distinguishing rule is given by the maximum a posteriori
probability (MAP) rule

D(x, t) = argmax
k

P(k|x, t).

With the help of Bayes...

P(k|x, t) = P(x|k, t) · P(k)
P(x|t)

=
P(x|k, t) · P(k)∑
k P(k)P(x|t, k)

.
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Relation between MAP and PI

Let P be any distribution such that P(k|x, t) ∝
∏m

i=1 P(k|xi, ti). We start
by maximizing MAP :

argmax
k

P̂(k|x, t) = argmax
k

m∏
i=1

P̂(k|xi, ti)

= argmax
k

∏
x,t

P̂(k|x, t)mP̃k(x,t),

where P̃k(x, t) = P̃(x, t|k) is the "counting" estimation (online) of x and
t that depends on k. Now talking the log2 gives

= argmax
k

∑
x,t

P̃k(x, t) log2 P̂(k|x, t)
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Relation between MAP and PI (cont’d)

= argmax
k

∑
x,t

P̃k(x, t) log2 P̂(k|x, t)

= argmax
k

∑
x,t

P̃(x, t|k) log2 P̂(k|x, t)

= argmax
k

∑
t

P̃(t)
∑
x

P̃(x|t, k) log2 P̂(k|x, t)

Taking the average over k and adding H(K) gives P̂ I(K;X,T )

H(K) +
∑
k

P(k)
∑
t

P̃(t)
∑
x

P̃(x|t, k) log2 P̂(k|x, t).

(except P̃(t) vs. P(t))
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Relation between MAP and PI (cont’d)

PI⇔ MAP
P̂ I is the expectation of the MAP over the keys.

Profiled case
If we have an infinite number of traces to estimate P̃→ P then we
recover PI(K ;X,T).

Ideal case
If we have an infinite number of traces to estimate P̃→ P and P̂→ P
then we recover MI(K ;X,T).
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Maximum Likelihood Attack

Maximum Likelihood Attack
Assuming we have y(k) = ϕ(f(t, k)) that follows the Markov condition,
then the optimal distinguishing rule is given by the maximum likelihood
(ML) rule

D(x, t) = argmax
k

P(x|y).

In practise...

P is most likely not known perfectly by the attacker
either estimated offline by P̂
or online on-the-fly P̃
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Maximum Likelihood Attack

Similarly, as in the previous derivation we have

argmax
k

P(x|y) =
m∏
i=1

P(xi|yi) =
∏
x,y

P(x|y)mP̃(x,y).

Taking the log2 gives us ∑
x,y

P̃(x, y) log2 P(x|y)

Now we add the cross entropy term that does not depend on a key
guess k

−
∑
x,y

P̃(x, y) log2 P(x)
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Maximum Likelihood Attack

This results to

argmax
k

P̃(x, y) log2
P(y|x)
P(y)

.

Profiled
P is estimated offline P̂ on a training device

argmax
k

P̃(x, y) log2
P̂(y|x)
P̂(y)

,

which is the template attack.
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Maximum Likelihood Attack

Non-Profiled
P is estimated online P̃ on a the device under attack

argmax
k

P̃(x, y) log2
P̃(y|x)
P̃(y)

,

which gives the Mutual Information Analysis [GBTP08].
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Believing or seeing ?

Should probabilities considered as precise as possible ?
Many recent works (e.g., [VCS09]) showed that using kernel
estimation is more efficient than using histograms
Accordingly, if P(Y ) is known, should it be used instead of P̃ (Y )
and P̂(Y )?
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Believing or seeing ?

Simple scenario

X = Y (k∗) +N,

Y (k) = HW (Sbox(T ⊕ k))

As Y follows a binomial distribution with parameters (n, 1/2), we have

P(Y ) = {1/256, 8/256, 28/256, 56/256, 28/256, 8/256, 1/256}.

Template attack : replace P̃(Y ) and P̂(Y ) by P(Y )
MIA : replace : P̃(Y ) by P(Y )
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Believing or seeing ?
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Conclusion

P̂ I(K;X,T ) is the expectation of the MAP over the keys
Maximum likelihood to recover
• template attack when probabilities are estimated offline (P̂)
• MIA when probabilities are estimated online on-the-fly (P̃)

In the attack phase : probabilities should be estimated instead of
using the true distributions
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