Firewall with Nano-Helix PUFs for Fiber-Optic Communication

Bertrand Cambou, and John Gibbs
Northern Arizona University, Flagstaff, Arizona, USA

Abstract

Complex Nanostructures deposited on transparent substrates with techniques such as Glancing Angle Deposition (GLAD) can be inserted into a fiber-optic cable to create unique patterns similar to DNA helices that can be exploited as Physically Unclonable Functions (PUFs). The resulting PUFs can act as a real "firewall" protecting communications through fiber-optic cables with challenge-response-pair (CRP) authentication. The trusted cables within Cyber-Physical-Systems (CPS) can be part of the cryptographic architecture securing the network.