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Abstract: When subject to natural effects such as aging, tem-
perature changes, bias voltages drifts, or electrostatic inter-
ferences, the profile of the Physically Unclonable Functions 
(PUF) Challenge-Response-Pairs (CRPs) error rates is made 
predictable when analyzed by multi-states and a Machine 
Learning Engine (MLE). With error correction, physical 
drifts do not result in false negative authentications (FNA), 
while statistically abnormal CRPs are flagged without in-
creasing the risk of false positive authentications (FPA). 
PUFs that are hard to uncover by side channel analysis that 
would be normally weak become excellent candidates. 
 
Keywords: cryptographic primitives; Physically Unclona-
ble Functions; hardware authentication; multi-state architec-
ture; coding-decoding methods; machine learning.  
 

1. BACKGROUND  
Physically Unclonable Functions (PUFs) are strengthening 
authentication methods, and this as part of a set of crypto-
graphic primitives. PUFs exploit intrinsic manufacturing var-
iations naturally, which are introduced during the fabrication 
of the devices such as critical dimensions, doping level of 
semiconducting layers, and threshold voltages [1 to 5]. These 
variations make each device unique, and identifiable from 
each other. The underlying mechanism of PUF is the creation 
of a large number of Challenge (i.e. Input) Response (i.e. out-
put) Pairs (called CRPs) that are unique to each device. Once 
deployed during the authentication cycles, the PUFs are que-
ried with challenges. The authentication is granted when the 
rate of matching responses is statistically high enough.  
Virtual Machine and Machine Learning:  
Virtual Machines, and Machine Learning Engines (MLE), are 
used in cyber-security [6 to 10] on the terminal side of a 
Cyber Physical System to prevent attacks. These MLEs need 
to operate in close loop, without external intervention to 
avoid disclosing additional information during attacks. The 
MLEs can be dedicated to handle security, and authentication 
isolating the terminal in case of a successful download of a 
malware. Current encrypted secure elements have both the 
computing power, and the secure memory space to support 
sophisticated Virtual Machine, and MLE functions. 
Error Correction:   
Different error correction coding (ECC) techniques have 
been utilized to reduce the intra-PUF variation factor in order 
to improve the similarity of the PUF responses to the same 
challenge in different attempts. The existence of determinis-
tic noise suggests the inefficiency of repetition coding 
(ARQ), hence forward error codes (FEC) are being used in 
PUF systems to improve their performance.  The idea of us-
ing ECC is borrowed from communication systems, where 
redundant information (parity or helper data) is added to the 
input signal to provide the possibility of error detection and 
correction over a noisy channel. Linear block codes have 
been widely utilized for error correction in several PUF types 
(Price and Sherman n.d.[11]), (Boehm 2010[12]) (Yu and 
Devadas 2010[13]) (Herder, Yu and Koushanfar 2014[14]). 
One of earliest attempts of using ECC was implementation of 
2-D Hamming codes with low error correction capability (B. 
Gassend 2003[15]). Reed-Solomon code is a class of linear 
block codes with a good performance in combating burst 
noise, hence considering a fairly uniform distribution of noise 

in PUF applications will not be an acceptable candidate; 
where Binary Bose-Chaudhuri-Hochquenghen (BCH) codes 
with fuzzy extractor have been used in (J. Guajardo, et al. 
2007[16][17]). A (255, 63, t=30) BCH code in which 192 
syndrome bits out of the n=255 codeword length were ex-
posed publicly was introduced in (Suh 2005[18]). This code 
offers a PUF with about 88% stability that has the capability 
of correcting at most 30 errors out of 255. In (Maes, Tuyls 
and Verbauwhede 2009[19]), the authors proposed a soft de-
cision making method for helper data algorithms in SRAM-
based PUFs, where a linear block coding as concatenation of 
repetition, BCH and Reed-Muller codes with soft decision 
maximum-likelihood decoding was utilized. It was shown in 
(Maes, Tuyls and Verbauwhede 2009[19]) that the soft helper 
data will not reduce the min-entropy. It is worth noting that 
some high performance coding techniques such as convolu-
tional coding and Low Density Parity Check (LDPC) coding 
will be appropriate for this application as they need a very 
long data string in order to achieve their efficient perfor-
mance, hence will be applicable to PUF error correction. 
However, these commonly used linear error correction codes 
cannot overcome the high data error rate of up to 25% in sub-
sequent read-outs of PUF in the presence of extreme external 
variations. These methods are using a hard-decision decoder 
to estimate the new readouts data in related to the initial data 
string that can result in a considerable information lost.  
 

2. GENERAL DESCRIPTION 
The method described in this paper is to design a PUF with 
multi-state and Machine Learning Engine (MLE) based on (i) 
a Challenge or Response generation process that captures the 
specific “personality” of the physical elements underling the 
PUFs in a multi-state memory; (ii) an authentication process 
that quantifies the profile of the CRP error rates, as well as 
the surrounding input parameters (such as ambient tempera-
ture); and then (iii) a computation by the MLE to finalize the 
authentication process, the coding-decoding algorithms are 
described in section 2 . Examples described below sometime 
assume that the size of the PUF challenges are N=128 bits, 
and that the Challenges and Responses are generated by a 
memory array based on a particular physical parameter as de-
scribed in many references [1 to 5]. The method will also be 
described in much broader terms. 

2.1  PUF Challenge /Response generation: 

 
The Challenge / Response generation process assumed in the 
example shown in Fig.1 is based on a memory array, and the 
measurement of a physical parameter. A “0” is programmed 
in the cells where the parameters are measured below the 
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threshold located in the middle of the distribution, and a “1” 
for the cells measured above the threshold. The PUF chal-
lenge, a stream of binary bits, is directly extracted from the 
memory after programming, and sent to secure server. As 
shown Fig.1, the cells are organized in n multiple states by 
sorting out the value of the physical parameters underlining 
each cell. For example the 16 cells with the lowest value are 
given the state 0, the following 16 cells the state 1, all the way 
to the 16 cells with the highest value that are the state 7. That 
way the 128 bits of the PUF are sorted in 8 different states. 
The precise mapping of the PUF memory array can be stored 
in a secure memory during the Challenge generation process, 
this is Option A. Option B, is to extract the mapping during 
the Response generation process. In more general terms a 
PUF of N bits is to be sorted into n states, either during Chal-
lenge generation, or Response generation. Each state i is hav-
ing ni cells in such a way that ∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=𝑛𝑛

𝑛𝑛𝑛𝑛=1 =N. The block diagram 
Fig.2 is showing the Challenge generation process. 

 
2.2  PUF Response generations and CRP error rates 

The PUF Responses are generated the exact same way as the 
Challenges were generated by the PUF memory, and this as 
often as there is a need for a fresh authentication, however 
the Responses can vary over time.  As shown Fig.3 CRPs er-
rors are to be expected considering that the measurement of 
the physical parameters underlining the PUFs are naturally 
evolving over time,  such as when subject to external effects 
such as temperature changes. For a given cell k that is part of 
the PUF, the CRP error between the Challenge Ck and the 
Response Rk is given by the equation (1). ΔCRPk is the CRP 
error rate of the cell k. For the ni cells that are part of the state 
i the average CRP error rate Ei is given by (2). For each re-
sponse, the Vector of Error VE t is given by (3): 

(1)  ΔCRPk = |Rk – Ck|                                                                   
(2)   Ei = 𝟏𝟏

𝒏𝒏𝒊𝒊
 ∑ |𝑹𝑹𝑹𝑹 − 𝑪𝑪𝑹𝑹|  𝑹𝑹=𝒏𝒏𝒊𝒊

𝑹𝑹=𝟏𝟏                                                              

(3)  𝑽𝑽𝑽𝑽  = 𝑽𝑽𝟎𝟎 , 𝑽𝑽𝟏𝟏, .., 𝑽𝑽𝒊𝒊 ,. . ,  𝑽𝑽𝒏𝒏                                                            
The CRP error rates, and Vector of error computations are 
valid for both Options. In one case, Option A, the segmenta-
tion by a state is done during the Challenge generation pro-
cess, or during the Response generation process for Option 
B. VEs are used for the authentication process. 

2.3  MLE for secure authentication 
An MLE is introduced to perform secure authentication as 
summarized on Fig.4. When the server sends a Challenge to 
the MLE, a fresh Response is generated by the PUF. The 
MLE gathers the Response, as well as all available data to 
compute the authentication. In Option A, the MLE retrieves 
the mapping of the multi-states from the secure memory. In 
option B a fresh mapping of the multi-states is generated dur-
ing the Response generation process. The MLE with a crypto-

processor can handle the communication between the secure 
server and the PUF. The data available for authentication j, 
as shown in Fig.5, is: 
 The Vector of Error: 𝑉𝑉𝑉𝑉𝑗𝑗  = (𝑉𝑉0 , 𝑉𝑉1, .., 𝑉𝑉𝑛𝑛 ,. . ,  𝑉𝑉𝑛𝑛)𝑗𝑗 , 

and this as described in section ii) 
 The Vector of Input: 𝐼𝐼𝑗𝑗  = (𝐼𝐼0 , 𝐼𝐼1, .., 𝐼𝐼𝑙𝑙 ,. . ,  𝐼𝐼𝑚𝑚)𝑗𝑗; this 

includes all parameters that could be available to 
the MLE such as operating temperature, biasing 
voltage and current conditions, and EMI noise. 

 The “Learning” data base that incorporates a record 
of prior Responses, 

  The generic predictive models describing the laws 
of physics underlining the parameters of the PUF. 
For example the impact of temperature on the pa-
rameter is well described by predictive models.  

 

 

 
Examples of computation are described below. 
 

3. CODING-DECODING ALGORITHMS  
The main design criteria related to the design of Coding-De-
coding PUF algorithms is achieving high inter-device and 
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low intra-device Hamming distances. The inter-device dis-
tance is measured as the average Hamming distance between 
the responses of two PUF devices to the same challenge that 
shows the uniqueness of PUF responses. However, the intra-
device distance measures the average Hamming distance be-
tween the responses from a PUF to the same challenge ap-
plied at different times and environmental situations.  The 
changes in environmental conditions, and the aging factor, 
can result in minor mismatches in circuit components, hence 
the PUF responses to a challenge can be highly affected by 
noise (Helfmeier, Boit and Tajik [20], [21]). These variations 
may occur due to random noise at terminal signals (ex: 
source, drain and gate), changes in temperature, voltage or 
aging effects (deterministic noise). The natural causes behind 
the deterministic portion of noise suggests the possibility of 
learning this behavior over the course of different experi-
ments and use this as a-priori information in error detection 
and correction for a new experiment. Using the error correc-
tion module can also combat the effect of random noise. 

3.1  Error Correction mode and MLE: 
In this work we are combining error correction code and ma-
chine learning mechanism to combat both random and pre-
dictable potential noise sources, see Fig 6.  

 
This mechanism is based on a novel multi-level iterative de-
coding method to improve the performance of error correc-
tion through utilization of intrinsic reliability information in 
data and also the iterative decoding between the two decoder 
modules that the soft output of each decoder is fed as a-priori 
information to other module to improve its decoding accu-
racy till converging to a desired performance. This design can 
considerably reduce the error probability. Since a portion of 
PUF error is due to physical and environmental factors, this 
can be learned and predicted using the data base information 
available from experiments on different PUFs. Here we take 
this knowledge into account to enhance the performance of 
the proposed method by correcting the remaining error after 
ECC. Since this error could have been caused due to several 
factors such as the variations in temperature, voltage and cur-
rent, we first utilize an Independent Component Analysis 
(ICA) technique to break down this error to summation of the 
known possible causes. Independent component analysis is 
the decomposition of a random vector in linear components 
that are non-Gaussian and independent or as independent as 
possible (Hvarinen, and Oja [22]). In the ICA algorithm pre-
sented below the assumption of independency among the var-
iables is relaxed to address the possibility of correlation 
among the physical and environmental factors that may cause 
variations in PUF readouts. Then each of this error terms are 
corrected using machine learning algorithm knowing the 
available data sets associated to variations due to each of 
these parameters. The PUF readouts are commonly mapped 
to a binary output, where the number of bits that are different 
in challenge and response are referred to as CRP error. A 
measure of PUF error tolerance is determined by Hamming 

distance. The larger Hamming distance results in lower prob-
ability that a noisy readout of a particular PUF will be 
mapped to another identity in database (lower false ac-
ceptance rate). Increasing the length of output bits reduce the 
false acceptance rate and false rejection rate. 
Multi-level soft correction method 
The multi-state generation method described in section 1 can 
be exploited within a novel multi-level soft decision correc-
tion method based on iterative decoding, in which the PUF 
readouts are first quantized to 8 different levels that enables 
us to have a measurement of readout reliability. Quantizing 
the readouts to discrete levels helps us to have a measurement 
of error probability and assignment of Euclidean distance by 
comparing the readouts to a given reference vector from the 
challenge. This model is able to further distinguish the accu-
racy and reliability of the readouts in compared to the binary 
model since it provides more information regarding the dis-
tance of the readouts from the thresholds. In the challenge 
side, the states are mapped to a binary notation using a Gray 
coding method, see Fig 7, and next the soft information will 
be extracted from these. Each bit of the string is coded using 
two independent BCH coding module based on code-offset 
technique and the corresponding helping data are encrypted 
using a Hash function and being available as public infor-
mation. In the response side, the PUF readouts in the response 
to the challenge are passed through a similar process of quan-
tization, Gray coding and the extracted information are com-
bined with the two publicly available helping data. The dif-
ference between the codewords extracted from the challenge 
and response is transformed to soft information and is fed to 
the iterative parallel concatenation decoding structure. 

3.2 Iterative concatenated method 

 
The novel coding structure is based on multi-state input and 
an iterative parallel concatenated decoding with soft decision. 
In hard decision decoding, the output takes a set of possible 
values (in binary case, 0 and 1), however in soft decoding the 
output presents the reliability of each bit, e.g. how close the 
reading is to the thresholds for 0 or 1, instead of saving the 
results in binary as in hard decision. Therefore, the proposed 
method can substantially improve the PUF data estimation 
accuracy by using the intrinsic reliability information in a 
concatenated structure. Furthermore, the new concatenated 
method can eliminate the need for having large initial data 
string to obtain a required accuracy. 
 Quantization:  

First each readout (Ri) is quantized to a state value from the 
finite set of (s1, s2, s3,…, sQ), where Q=2M  , where Q and 
M denote the number of non-overlapping states and the num-
ber of bits, respectively. The quantization can be performed 
using common uniform midrise quantization method. As-
suming a Gaussian distribution, we utilize the Lloyd-Max 
quantizer as the optimum design for Gaussian distributed in-
put (Llyod 1982[23]; Yang and and Wu 2012[24]).  
 Gray Coding:  
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In the new method to map the state information to binary data 
to be transmitted between the server and PUF, we use binary 
Gray coding in which the adjacent states only differ in one 
bit. The Gray coding implementation for the case of 8 number 
of states is depicted in the following figure.  This results in 
enhanced error resiliency of the proposed method.  
 Error Control Coding Structure: 

A Turbo-inspired coding structure was designed as a parallel 
concatenation of two coding components Turbo codes have 
been widely used in communication systems due to their 
near-Shannon limit performance in noisy and fading channels 
(Berrou and and Glavieux 1996[25]) (Razi, Afghah and 
Abedi, Binary Source Estimation Using a Two-Tiered Wire-
less Sensor Network 2011[26]) (Afghah, Ardebilipour and 
Razi 2008[27]) (Razi, Ardebilipour and Afghah, Space-Time 
Block Codes Assisted by Fast Turbo Codes 2008[28]). 
The two key features of turbo codes are i) using with a pseu-
dorandom interleaver between the two coding components, 
and ii) iterative decoding structure with soft-input soft-output 
(SISO) decoder. The interleaver will distribute the potential 
error in a dataword over different datawords and conse-
quently increase the probability of error correction. In itera-
tive decoding design, the soft input of one decoder is fed to 
other decoder and vise verso, till the final decoding result 
converge with a desired accuracy. The turbo codes are most 
commonly built up as a parallel concatenation of two Recur-
sive Systematic Convolutional (RSC) codes. However, these 
will have an efficient performance for a long data string 
which is not the case in PUF applications. Also for long input 
length, the computational complexity of the decoding process 
becomes intractable.  
3.2.1 Coding Structure: 
One approach is to use linear block codes with a turbo-in-
spired parallel concatenated coding structure and iterative de-
coding nature to obtain the gain of accurate error correction 
with an acceptable data string length. Different coding com-
ponents such as BCH and Reed Solomon (RS) can be utilized 
in this model. Moreover, the coding can be performed 
through a multi-stage parallel coding structure. We explain 
here the case of having two coding components with a ran-
dom interleaver in between, see Fig. 8A. 

 
Interleaver: An interleaver is utilized between the two par-
allel coding components to distribute the possible error over 
the codeword and produce a randomlike property. This ena-
bles us to shuffle the PUF outputs while keeping its linear 
behavior. Different interleaver designs have been used in 
communication systems including random interleaver, con-
volutional interleavers, random interleaver and S-random in-
terleaver. Considering the key-generation concern in PUF ap-
plication we utilize a random interleaver, where the order for 
random shuffling is securely saved in PUF to perform the de-
interleaving and generate the response and this is not availa-
ble as public information. The coding structure is designed 
based on code-offset technique as described in follow. In  
challenge phase, the PUF readouts are quantized to 8 states 

and converted to binary format using Gray method to gener-
ate bit string w ∈{0,1}n .  Two codewords c1  and c2 that are 
randomly selected from a linear block code set Cn,k with min-
imum distance d (Dodis, Reyzin and and Smith 2004[29]) are 
added to w. The offset data between w and c1  and c2 is called 
helper data (h1=w+ c1, h1=w+ c2) ) and is publicly available. 
In response phase, a fuzzy version w' ∈ {0, 1}n   is generated 
by PUF, from which 𝑐𝑐1′  and 𝑐𝑐2′  are calculated as 𝑐𝑐1′  =w'+ h1, 
𝑐𝑐2′  =w'+ h2. The distance between 𝑐𝑐1′  and 𝑐𝑐2′  with c is used to 
calculate the reliability information (soft-information). To 
further enhance the security, the helper that can be encrypted 
using a Hash function or adding redundant information. 
3.2.1 Decoding Structure: 
In each round, the extracted soft information is used as an 
input for a consecutive soft-decision module, hence the PUF 
key can be determined with a lower length string.  The criteria 
to determine the original codeword associated with current 
observation from the response is selecting the codeword with 
minimum Euclidean distance. The reliability of the decoded 
bits is given by the log likelihood ratio (LLR) of the decision.  

 
A Chase-Pyndiah algorithm is utilized for iterative decoder 
to minimize the probability of error. In this decoder, each de-
coder component receives soft input LLR information as log-
arithm of likelihood ratio (an estimate expressing the proba-
bility that the transmitted data bit was equal to zero or one). 
Both decoder components provide estimates of the same set 
of data bits in a different order. This information exchange 
process is continued in an iterative manner till converging 
with a desired accuracy. At each round, decoders re-evaluate 
their estimates, using information from the other decoder. 
The output of the system can be extracted in soft format as 
the likelihood of each binary bit or as the difference between 
the original noisy input and the final extracted info, Fig 8B. 

 
4. EXPERIMENTAL VALIDATION  
4.1 Experimental data – Resistive RAM 

In order to model realistic ReRAM PUF CRPs, Cu/TaOx/Pt 
resistive devices have been fabricated, and characterized at 
Virginia Tech in a crossbar array on a thermally oxidized Si 
wafer, Reference [16]. A single Cu/TaOx/Pt switch relies on 
an electrochemical formation and the rupture of a Conductive 
Filament (CF) bridging the dielectric between the active Cu 
and an inert Pt electrode. We are studying the variations of 
the Vset voltage for the generation of PUF Challenge-Re-
sponses-Pairs.  Figure 9 (a) shows the cumulative Vset prob-
ability distribution within a typical sample of ReRAM 
memory array, containing 10,000 cells. There exists a mini-
mum Vset voltage applied across the switch, at which a CF 
is being formed. When the voltage applied to the Cu electrode 
is pulsed or swept at a positive voltage, the current will re-
main substantially zero until a critical voltage Vset is 
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reached, at which a Cu CF is formed connecting the Cu and 
Pt electrodes, and the cell switches from a high resistive state 
(HRS) characterized by Roff (1–900 MΩ) to a low resistive 
state (LRS) characterized by Ron (70–6000 Ω).  

 
The mean of the Vset distribution is μ=2.1V (indicated by the 
dashed line) and the standard deviation is σstd=0.54 V. In or-
der to study the robustness of the PUF method, and the CRPs 
error rate, we have characterized the Vset distribution for sev-
eral individual ReRAM cells. For this characterization, see 
Figure 9(b), we have selected from the distribution a cell with 
a low Vset value (Vsett≈1V) and a cell with a high Vset value 
(Vsett≈2.5V). The cells have been subjected to repeated reset 
and set operations under the same conditions. Vset distribu-
tion for the low Vset cell is centered around 1V, and its stand-
ard variation is σstd=0. For the high Vset cell we obtain 
μ=2.52 V, and σstd=0.158 V, also smaller than the array var-
iations. Based on these results, the variation of each cells is 
plotted on Figure 9(c) as a function of the average Vset of 
these individual cells. The challenges and responses of the 
PUF are generated after characterization of each cell, with a 
“0” state when Vset<μ, and a “1” state when Vset>μ.  

4.2  Statistical analysis – CRPs  

 
Based on the experimental data presented in the previous sec-
tion the drift between the Challenges and the responses is 
modelled assuming normal distributions. The analysis on the 
Fig 10A report impact of the drift of the Response on the CRP 
error rates, is by state. 𝑽𝑽𝑽𝑽𝒊𝒊 is computed by state from 0 to 7 
for the base. When the Responses are drifting in a positive 
direction, respectively to 2.25V and 2.4V, the CRP error rates 
of the first four states are going down, while the CRP error 
rates of the last four states are going up. A reverse effect is 
observed for negative drifts to 1.95V and 1.8V. In Figure 10B 
the analysis is related to the respective change of the standard 

deviation of the entire population versus the standard varia-
tion of each cells. 

 
 If the spread of the general population of Responses to the 
PUF is getting tighter compared with the spread of Responses 
to an individual cell the average error rates across the 8 states 
will go up.  

 
Conversely if the spread is relatively wider, the average de-
fect rates is going down. The analysis showing the impact of 
drifts of the physical parameters on the CRPs Vector of Er-
rors VEs is summarized on Fig.11. The method to capture the 
profile of the physical parameters underlining a PUF with 
multi-states result in a predictable tracking of the drifts.  

 
The effect of the external parameters such as temperature and 
bias conditions can enhance the accuracy of the computations 
of the MLE, see Fig 12. A set of lock up tables can be gener-
ated upfront with anticipated Vectors of Errors in each loca-
tion, then stored in the working memory of the MLE, thereby 
further enhancing the accuracy of the authentication process. 
During a particular authentication cycle a sensed Vector of 
Input can allow the MLE to extract from the lock up table the 
expected Vector of Error as part as the “learning” data base. 
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5. SUMMARY  
Security considerations: PUFs are strong cryptographic 
primitives because a fresh Response is generated by the hard-
ware as often as needed to offer a secure, trusted authentica-
tion. Alterations to the PUF due to foreign intervention, or 
attempts to present a fake Challenge should be flagged by a 
negative authentication. The method described in this disclo-
sure has the objective of enhancing the strength of PUFs by 
reducing the negative influence of natural drifts and varia-
tions of the physical parameters underlining the PUF. Other 
important factors in judging the strength of PUFs are their 
unclonability, and their ability to block foreign entity to ac-
cess secret information, such as the PUF Challenge or the 
mapping of the multi-states. Ways to improve security when 
multi-state architecture is involved include: 
- Storing the mapping of the multi-state during Challenge 
generation within an embedded secure memory, the Option 
A. Thereby mapping is only generated once, together with the 
Challenges. However correctly securing the secrecy of the 
storage is pivotal to the value of the method.  
- Generating a fresh mapping of the multi-states during Re-
sponse generation, and downloading it to the MLE, the Op-
tion B. In this case no data is stored, and post authentication 
there is no information left to be stolen by third party. 
- Finally there is the possibility to send the mapping of the 
multi-states directly to the secure sever together with the 
Challenges. When the data transferred between the PUF and 
the secure server is encrypted, this method is also safe. 
False Positives Authentication (FPA) versus False Negative 
Authentication (FNA): The physical parameters underlying 
PUFs as described in this paper follows the laws of physics 
that make them predictable when subject to effects such as 
temperature or bias changes. The methods described in this 
work are leveraging this predictability to reduce FNA with-
out having a negative impact on FPA, the related error cor-
rection methods will not correct random defects. The usage 
of weaker physical parameters will have acceptable FNAs, 
while making side channel attacks more difficult. 
Future work: Considering the encouraging statistical analy-
sis done with ReRAM samples additional funding were se-
cured to pursue the development of PUF components based 
on these methods. Short term we expect to model of the effect 
of temperature and biasing conditions on the Vset, and antic-
ipated CRP error rates. We intend to develop several coding-
decoding options, and analyze the respective benefits in re-
ducing FNAs, and FPAs. 
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