

Dynamic Spatially Isolated Secure zones for NoC-based Multi and Many-core Accelerators

<u>Maria Méndez Real</u>, Vincent Migliore, Vianney Lapotre, Guy Gogniat Lab-STICC Université de Bretagne-Sud Lorient FRANCE

Philipp Wehner, Diana Göhringer Ruhr-University Bochum, GERMANY

Different SW attacks due to resource sharing:

1. Denial of services: preventing other applications from using the shared resources (computing, memory and communication infrastructure resources)

2. Confidentiality and integrity attacks: illegal <u>direct</u> access to data

3. Confidentiality : illegal <u>indirect</u> access to data

Cache based Side-Channel Attacks

Principle:

Analyzing the leakage of memory access and communications in order to deduce sensitive information about the victim

1. Access-driven Side-Channel Attacks due to cache sharing

• Sharing the same core

Access-driven Side-Channel Attacks due to cache sharing

- Sharing the same core ٠
- Across cores ٠

Principle:

Analyzing its own performance -> information about the memory accesses of the victim or the communication flow -> deducing sensitive information

Background: Cache properties

• Retrieving data from cache level closer to memory takes longer than cache levels closer to the core

Background: Cache properties

- Retrieving data from cache level closer to memory takes longer than cache levels closer to the core
- LLC caches are inclusive

Background: Cache properties

- Retrieving data from cache level closer to memory takes longer than cache levels closer to the core
- LLC caches are inclusive
- Evicting data from LLC evicts also the data on the lower caches

Background: Access-driven Side Channel Attacks across cores

• Flushing + Reload [1] example

A round of attack:

- 1. The attacker flushes the monitored memory page
- 2. Wait until the victim potentially access the line
- 3. The attacker reload the memory line measuring the time to load it

Context: Attacking a NoC-based system

Time-driven Side-Channel attacks on NoC-based multi and many-core architectures

Principle: Analyzing its own performance to deduce the communication flow

Context: Attacking a NoC-based system

Context: NoC-based many-core accelerator

A host machine delegates part of the computation to a many-core accelerator A controller is in charge of the deployment of the applications on the accelerator

Background

Countermeasure	Direct illegal memory access	Access-driven attacks across cores	Time-Driven attacks on the NoC	DoS
Bi partitioning the processor [4]		×	×	×
Logical isolation (MMU, MPU, NoC MMU [5][6])	~	×	×	×
Monitoring mechanisms [7]	X	X	X	
NoC protection [3]	X	X		×

[3] J. Sepulveda, et al., "Noc-based protection for soc time-driven attacks", Embedded Systems Letters, IEEE, vol. 7, no. 1, pp. 7–10, March 2015.

[4] www.arm.com/products/processors/technologies/trustzone/

[5] R. Masti, et al., "Isolated execution in many-core architectures", in Proc. of Network and Distributed System Security Simposium (NDSS), 2014.

[6] G. Kornaros, et al., "Hardware Support for Cost-Effective System-level Protection in Multi-Core SoCs", in Proc. of Digital System esign (DSD), 2015.

[7] L. Fiorin, et al., "A security monitoring service for nocs", in Proc. of Hardware/Software codesign and system synthesis (CODES+ISSS), 2008.

Spatial isolation for sensitive applications

- How can this be achieved?
- Expected under utilization of resources, how can the performance overhead be evaluated?

Implementation

The ARM as a controller of the platform

Evaluation of different deployment strategies running on the ARM

- Monitoring of the platform state
- Resource allocation algorithms
- Secure zones creation strategies

Secure-enable mechanisms

- Scheduling: Round Robin
- Monitoring: Distributed quaternary decision tree

Secure-enable mechanisms

- Task mapping : Leverage the data accesses locality
- Isolated application -> secure zone creation:
 - Static SZ size
 - Dynamic SZ size

Evaluation environment

OVP-based MPSoCSim

[8] M.Méndez Real et al., "MPSoCSim extension: An OVP Simulator for the Evaluation of Cluster-based Multicore and Many-core architectures," in Proc. Workshop on Virtual 19 Prototyping of Parallel and Embedded Systems (ViPES) as part of the International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XV), 2016.

Experimental setup

Experimental protocol:

- 4x4 clusters architecture (60 MB + 1 ARM)
- Matrix multiplications, 17 parallel tasks, unfavorable case => 5 clusters needed, only 17 used. 5 applications meaning 85 tasks running in parallel

Different deployment strategies:

- 1. Secure zones of fixed size
- 2. Secure zones with dynamic size

Different execution scenarios:

- a. Baseline scenario
- b. One priority isolated application
- c. One treated at the middle of the execution
- d. Three isolated applications

ARM frequency	667 MHz	
MB frequency	100 MHz	
Nom MIPS	100	
realFlitTime(ARM)	850 ns	
realFlitTime(MB)	40 ns	
Network frequency	100 MHz	
Network size	4*4	
Processors per cluster	4	
Clock dolay pass		

Results

- **b.** One isolated application with the highest priority
- c. One isolated application with a medium priority
- d. Three isolated applications

[9] M. Méndez Real et al., "Dynamic Spatially Isolated Secure Zones for NoC-based Many-core Accelerators", 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2016.

CE List Labsticc Lip Line (Sunainly

Results

- b. One isolated application with the highest priority
- c. One isolated application with a medium priority
- **d.** Three isolated applications

Results

Exec. time of non isolated, isolated application (in msec.) and in average:

	Evaluated deployment strategy and execution scenario	Total exec. time	Exec. time in average for non-isolated applications	Exec. time in average for isolated applications	Exec. time in average
	baseline	363.35	202	-	202
1. Static SZ	(1.a)	363.49	206	163	197
size (5	(1.b)	364.51	338	214	313
clusters)	(1.c)	368.10	242	181	205
,	Average for 1.		262 (+29%)	186 (-8%)	237 (+17%)
2. Static S7	(2.a)	374.79	261	198	248
size (A	(2.b)	414.58	264	269	265
size (+	(2.c)	374.51	272	270	271
	Average for 2.		265 (+31%)	245 (+21%)	261 (+29%)
3. Dynamic SZ. size	(3.a)	366.94	223	159	210
	(3.b)	433.18	261	400	253
	(3.c)	450.00	214	376	264
	Average for 3.		232 (+14%)	311 (+53%)	242 (+19%)

- b. One isolated application with the highest priority
- c. One isolated application with a medium priority
- d. Three isolated applications

The dynamic strategy leverages the performance of non isolated applications

Results

Resources utilization rate:

	Evaluated deployment strategy and execution scenario	SZ resources utilization rate during the time of the SZ	Total resource utilization rate in average
	a. (baseline)		77%
1. Static SZ size 5 clusters	1. b.	85%	68.5%
	1. c.	85%	71%
	1. d.	85%	61.6%
2. Static SZ size 4 clusters	2. b.	65%	64%
	2. c.	65%	69%
	2. d.	65%	55%
3. Dynamic SZ size	3. b.	85%	72%
	3. c.	89%	69%
	3. d.	92%	67%

The dynamic strategy achieves the highest resource utilization rate

Conclusion and future work

- Spatial isolation of sensitive applications
- Evaluation on different execution scenarios with different strategies through virtual prototyping
- A global performance overhead up to 30%

Future work: NoC protection

Thank you for your attention!