

Institut Mines-Télécom

Some results about the Aging Impact on Delay PUFs

> Cryptarchi June 2016

Florent Lozac'h², Jean-Luc Danger^{1,2}, Naghmeh Karimi³, Sylvain Guilley^{1,2}

¹Télécom ParisTech ²Secure-IC ³Rutgers University

- Aging and delay PUFs
- Aging simulation
- Aging acceleration on real silicon
- Conclusions

Aging and delay PUFs

- Aging simulation
- Aging acceleration on real silicon
- Conclusions

Gate Oxide

- Negative Bias Temperature Instability (NBTI)
 - Cause: Holes creating traps between Si-O2 and substrate
 - Impact: Vth increase, especially for PMOS transistors
 - Acceleration: High temperature and high Vdd
- Hot Carrier Injection (HCI)
 - Cause: Electrons colliding with the gate oxide (rather than going only to the condution channel between source and drain)
 - Impact: Vth increase
 - Acceleration: with high switching rate and high Vdd
- Time dependent dielectric Breakdown (TDDB)
 - Cause: Conductive path creation in the gate oxide
 - Impact: Gate breakdown
 - Acceleration: with high switching rate and high Vdd

Interconnect

- Electromigration (EM)
 - Cause: High density current remove conductor atoms
 - Impact: net breakdown

Delay PUF: Arbiter PUF

Aging and delay PUFs

Aging simulation

- Aging acceleration on real silicon
- Conclusions

Aging simulation

Aging simulation of delay-chain PUF

Aging simulation parameters:

- 20 months of aging
- 8192 LPUF with n=1 element
- or 512 LPUF with n=16 elements
- 3 "duty cycle" of the signal, to check the NBTI impact
 - •1%, 50% and 99%
 - X% means that during X% of time the PMOS transistors are "off
 - " (no NBTI aging)

Aging simulation of Loop PUF of 16 elements challenge = 0x00FF

The aging has no monotonous impact on the mean

The std deviation always increases Greater increase the first months The slope with 1% duty cycle is slightly smaller

Aging simulation of Loop PUF of 16 elements challenge = 0x5A5A

The aging has no monotonous impact on the mean

The std deviation always increases Greater increase the first months

Aging simulation of arbiter PUF

2 parts:

1. Delay chain

Very similar to the Loop PUF

2. Arbiter

• Result =number of bit flips among 16384 arbiter latches

Aging simulation of the arbiter only

14

- Aging and delay PUFs
- Aging simulation
- Aging acceleration on real silicon
- Conclusions

Cryptarchi 2016

Aging acceleration of Loop PUF

Aging acceleration parameters:

- 100 days of acceleration
- 49 PUFs of 64 delay elements

Aging acceleration procedure

Step 1: STRESS phase, duration 23 hours

- Power voltage is set at 2 V, Temperature is set at 85°C 1.
- The challenge is set at 0x0000000ffffffff 2.
- 3 The PUFS are stressed in the following order:
 - pufs(1-8) always measured,
 - pufs(9-15) 1/8 time,
 - pufs(16-31) 1 /64 time,
 - pufs(32-49) never measured
- Idem steps 2-3 with the challenge set to 0xfffffff00000000 4.

Allows to test the impact of

the switching activity

- Step 2: MEASUREMENT phase, duration 1 hour
 - The chip is back at normal conditions (1.2V, 20°C), and PUF measurements are taken periodically.
- GOTO Step 1

Aging impact on the absolute value

Aging impact on the mean of the differential
value $\lfloor N \sum_{i=1}^{n} d(c_i) \rfloor - \lfloor N \sum_{i=1}^{n} d(-c_i) \rfloor \end{pmatrix}$

Mean on 49 PUFs Challenge = 0x00000000FFFFFFFF

Aging impact on the std deviation of the differential value $\lfloor N \sum_{i=1}^{N} d(c_i) \rfloor - \lfloor N \sum_{i=1}^{N} d(-c_i) \rfloor$

Mean on 49 PUFs Challenge = 0x00000000FFFFFFF

- Aging and delay PUFs
- Aging simulation
- Aging acceleration on real silicon
- Conclusions

Conclusions

The results of the aging acceleration confirms the simulation

The aging has a very small impact on delay chains

- The std deviation increases of 0.02 ps / element after 1000 hours
- The aging impact on the mean is not a monotonous function

The aging has a significant impact on the arbiter

• More than 1% bit flip after one year (simulation)

The NBTI effect is dominant

- Aging even if no activity
- The HCI appears with intense switching activity

Perspectives

- Validate the Arbiter bit flips results on a real circuit
- Simulate with the 65nm technology

