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Random and Pseudo-random Generators: 
different in goal, enabling technique and testing method

Pseudo-Random Bit Generator Random Bit Generator

Goal
Uniform distribution: 
generating data that look random

Maximal entropy: 
generating data that are random

Enabling technique
Cryptography: 
deterministic finite state machines using 
strong one-way functions

• Noise/Entropy generation 
• Protection against disturbances 
• Entropy extraction 
• Entropy concentration

Testing Method
(deceiving) Statistical hypothesis test: 
can we hide the fact that there is no 
entropy?

Entropy evaluation: 
are we close to the maximal entropy 
density?
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1. Noise model not available (or technology dependent) 

2. Noise model available (and technology independent) 

3. Noise model does not matter (chaotic sources) 

Entropy rate depends only on the Lyapunov exponent of the system. 
Any other parameter non affecting the Lyapunov exponent could eventually 
change the statistical distribution, but not the entropy rate. 

Assessing entropy by means of statistical distribution (of noise or of symbols) is 
not only useless, but also misleading.

Entropy evaluation vs classes of entropy sources
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Implementation overview

Two-speed  
(Ffast/Fslow) 

 ring oscillator

Entropy ExtractorChaotic Noise Source
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Full entropy extraction by means 
of a generating partition.

Full entropy output. 
Testable by means of a 
suitable predictor.

Constant entropy rate: 
log2(Ffast/Fslow)
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Expected operating frequencies and entropy rate 
(transistor level simulation)

Worst case assumptions:  
• Noise free VDD = 1.25V 
• Jitter free CLK oscillator 

Technology: CMOS 40nm

Unit -40°C +25°C +70°C

Fast frequency MHz 421 381 357

Slow frequency MHz 160 139 126

Ratio - 2.637 2.752 2.832

H rate = log2(Ratio) bits 1.399 1.460 1.502
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Estimated entropy vs. Temperature 
(real data on 10 nominal process chips)

Conditions: 
• 160Mbit raw data 
• 10 NOM chips, -40°C, +25°C,+70°C

AVG: 1.371 
SIM: 1.376

AVG: 1.458 
SIM: 1.460

AVG: 1.467 
SIM: 1.502
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Conditional entropy estimation 
(real data on 10 nominal process chips)

Conditions: 
• 160Mbit raw data 
• 10 NOM chips, +25°C

- Measured H fits to the model 
- No long-term dependencies
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Well known results on chaotic systems

Entropy rate 
• the system has an “intrinsic” (Shannon) entropy rate which is defined by the 

Kolmogorov-Sinai entropy 
• the intrinsic entropy rate is equal to the Lyapunov exponent (Yakov B. Pesin) 

(i.e. the entropy rate does not depend on the noise model) 

Entropy extraction 
• the full entropy rate of the system can be extracted by using a generating partition 

of the phase space 

Entropy evaluation feasibility 
• memory (i.e. statistical dependency) decreases exponentially 
• system is mixing ⇒ ergodic ⇒ stationary
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Chaos Based Sources: 
Principle of Operation

positive feedback 
(exponential stretching)

negative feedback 
(folding)

Chaotic systems can be seen as a “stretching and folding” mechanism.

• a positive feedback loop exponentially 
stretches (amplifies)  state variables 

• a negative, non linear, feedback loop 
folds (constraints) the state evolution 
inside the dynamic range of the system

With respect of traditional solutions, noise amplification and external 
disturbances are not anymore an issue (both, noise and disturbances, are 
exponentially amplified and the effect cannot be controlled by an attacker). 

The main issue is finding a robust implementation since, If one of the two loops 
prevails (positive vs negative), the system gets saturated or switches off.
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Whichever              is,              converges to 

                            exponentially fast.

Bernoulli map: an ideal binary entropy source

exponential stretchingfolding

Discrete time chaotic system:

vi+1 = mod (2 · vi, 1)

xi = b2 · vic

v0 =
1X

i=0

xi · 2�(i+1)

⇢ (vi)

⇢inv (v) = 1

⇢ (v0)

The generated sequence 
actually consists of the binary 
representation of the initial state:

and, it can be seen, it has maximal 
entropy.

vi+1

vi
v0

xi = 0 xi = 1 0

 1
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Stretching and folding (e.g. vi+1 = mod(k ⋅ vi, 1); k = 4): 
how the noise amplification operates

0 1

0 1

0 1 2 3 4

4⇥

mod ( · , 1)

stretch

fold

pVi

p{4·Vi}

vi

pVi+1

vi+1 = mod (4 · vi, 1)

{4 · vi}
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Convergency to the invariant distribution for k integer 
(e.g. k = 4)

It can be proven that, whichever is the initial distribution, the system state exponentially 
converges to an invariant (i.e. stationary) distribution that, since k is integer, is also 
uniform.
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Mutual information and memory for k integer (e.g. k = 4)

There is no mutual information between V and X  and hence no mutual 
information (i.e. no memory) between xi and xi+1.

If k is integer and Vi is equidistributed, Vi+1 is 
also equidistributed.

0 1

0 1

0 1 2 3 4

4⇥

mod ( · , 1)

stretch

fold

xi = 00b xi = 01b xi = 10b xi = 11b

1

1

1/4

pVi

p{4·Vi}

pVi+1

vi+1 = mod (4 · vi, 1)

{4 · vi}

vi
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If     is not integer,                  is not uniform 
and the generated sequence is not maximal 
entropy (symbols are not equidistributed 
and not independent). 

Nevertheless the entropy rate depends 
only on the Lyapunov exponent of the 
system and it holds:

Generalised Sawtooth Map

vi+1

vi
v0

xi = 0 xi = 3xi = 1

k = 8/3

 0

 1

Generalisation of the Bernoulli map:

|k| > 1

k ⇢inv (v)

h (X) = log2 |k|

xi = C (vi) = b|k| · vic
vi+1 = G (vi) = mod (k · vi, 1)
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Convergency to the invariant distribution for k non integer 
 (e.g. k = 8/3)

It can be proven that, whichever is the initial distribution, the system state exponentially 
converges to an invariant (i.e. stationery) distribution but, since k is not integer, is not 
uniform. Moreover, the successive values of the state are not independent,
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“Noisy” Discrete time system representing a chaotic, a 
free-running or a PLL oscillator depending on k

1-dimensional state map:

state envelop: bi = ±min (0.5, 3 · �vi) = ±min

0

@0.5, 3 ·

vuut
iX

j=0

(ki�j · �⌘)
2

1

A

v̄i+1 = mod (k · v̄i + 0.5 + ⌘i, 1)� 0.5
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Noise intensity does not practically matter
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The time needed to reach the steady state depends just logarithmically on the noise 
intensity. 

However, in steady state, the system behaviour does not depend on noise intensity.
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Entropy rate is practically independent from noise intensity

�⌘

k 10

�3
10

�6
10

�9 H(X) = log2k

2

0.1 ⇡ 1.071 0.463 0.107 0.107 0.1

2

0.2 ⇡ 1.148 0.318 0.202 0.202 0.2

2

0.3 ⇡ 1.231 0.337 0.300 0.300 0.3

2

0.4 ⇡ 1.319 0.417 0.400 0.400 0.4

2

0.5 ⇡ 1.414 0.507 0.499 0.499 0.5

2

0.6 ⇡ 1.515 0.603 0.598 0.598 0.6

ˆH(X)

Estimated entropy rate

ˆH (X) vs noise intensity �⌘, multi-

plication factor k and the expected entropy rate H(X) = log2k.

Using a suitable generating partition, the “intrinsic” entropy rate of the system can be 
estimated: 
noise intensity has some effect only when the system is very “weakly” chaotic.
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Why entropy rate coincides with Lyapunov exponent?

The entropy rate of the system coincides with the information rate that an observer 
should get, at each step, in order to trace the state of the system maintaining the same 
uncertainness (e.g. 3 bits if              ).

!i+1 = 8·!i
!i

In a chaotic system the uncertainness of the observer regarding the state of the system 
grows exponentially according the Lyapunov exponent    : E.g. in a 1-dimensional 
discrete time system:                    .

e� = 8

�i+1 ⇡ �ie
�

�
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The proposed chaotic system is implemented in the time domain where the modulo 
operation is implicit in the nature of the state variables (oscillator phases).

Proposed noise source: continuos time representation

u (t) = mod (t, 1)

v̇ (t) =

(
slope

slow

if mode = slow

slope

fast

if mode = fast

lim

�t!0
v (t+�t) = mod (v (t) + v̇ (t) ·4t, 1)

mode 
(
slow when u = 0

fast when v = 0

phase of “reference oscillator”:

phase of “controlled oscillator”:

“controlled oscillator” has two speeds:

speed control logic:

QS

R

slow_fast

Ref
Osc

Controlled
Osc

u

v

v = 0

u = 0

slow

fast

(clock)
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Proposed entropy source: discrete time representation

By defining a system iteration as the period between two fast -> slow transitions, it is 
possible to define the chaotic map (i.e. the discrete time representation). 

1

slopeslow
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slopefast

slopefast
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✓
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i
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slow

, 1

◆◆
, 1

◆

1�mod

✓
1� v

i

slope

slow

, 1

◆

1� v

i
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slow
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Evolution of two trajectories (jitter amplification 
mechanism)

Noise (i.e. jitter) amplification results from the separation between trajectories which 
follows the law                                  where                                           . 

This is the evidence that the Lyapunov exponent is                    .

k = slope

fast

/slope

slow

� = ln |k|

|�vi+n| = |�vi| kn

1
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4vi
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4v

i+1 =
slope
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slope

slow

4v

i



Copyright © Infineon Technologies AG 2016. All rights reserved.6/7/2016 30

Controlled oscillator and clock traces over two runs
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Noise amplification on 10 simulation runs 
k = slopeRatio = 2.735; slopeFast = 1.87; nSigma = .001
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Time evolution for different clock vs controlled-oscillator 
frequencies
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Chaotic map for different clock vs controlled-oscillator 
frequencies

 0

 1
vi+1

vi  0

 1
vi+1

vi
 0

 1

vi

vi+1

slope

fast

> 1 and slope

slow

< 1slopefast < 1
slope

slow

> 1

The chaotic map can assume three different shapes, but it is always a piecewise 
linear map having constant derivative                                            and therefore a 
constant entropy rate              .  

                                              is the only relevant parameter of the system.

k = slope

fast

/slope

slow

log2 |k|

k = slope

fast

/slope

slow
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Entropy extraction

Entropy extraction consists of the transfer of the entropy of the system (in this case the 
jitter of the controlled oscillator) to a digital sequence X. 

FACT: the entropy rate of the system is log2(k), i.e. it depends on a single 
parameter (namely the ratio between fast and slow frequency of the controlled 
oscillator). 

GOAL: the entropy extraction mechanism should extract the full entropy rate of the 
system regardless of any system parameter (namely the absolute frequencies of the 
two oscillators) 

Notice: in general, X does not have maximal entropy per bit. Entropy concentration is 
performed by post-processing hashing.
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Entropy extraction: 
slow case (slopefast ≤ 1)

The controlled oscillator v is always (i.e. also in fast mode) slower than the reference 
oscillator u. 

System iterations are always executed inside a single v (i.e. controlled oscillator) 
period.

Entropy is extracted from the number of u (i.e reference oscillator) periods.

1

0 0.25 0.750.5 0 0.750.50.25 0 0.750.50.25 0 0.750.50.25 00 0.750.50.25

vi
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u

v

count(u) = 3
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Entropy extraction: 
fast case (slopeslow ≥ 1)

Entropy is extracted from the number of v (i.e controlled oscillator) periods.

The controlled oscillator v is always (i.e. also in slow mode) faster than the reference 
oscillator u. 

System iterations are always executed inside a single u (i.e. clock) period.

1

0 0.25 0.750.5 0 0.25 0.750.5 0

vi

vi+1
vi+2

v

u

count(u) = 1

count(v) = 5

count(u) = 1

count(v) = 6
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Entropy extraction: 
intermediate case  (slopefast >1 and slopeslow < 1)

The controlled oscillator v can be slower or faster (depending on the slow/fast mode) 
than the reference oscillator u. 

System iterations can include a different number of both reference oscillator u and 
controlled oscillator v periods.

Entropy is extracted from both the number of u (i.e. reference oscillator) and v 
(controlled oscillator) periods.

1
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vi
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v

count(u) = 2

count(v) = 2
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The whole entropy rate of the system can be extracted by generating the output 
sequence                        by means of a  generating partition of the state space:

Entropy extraction and generating partitions

x̂i = x̂i,0, x̂i,1

x̂

i,0 =

j
slope

fast

⇣
1�mod

⇣
1�v

i

slope

slow

, 1

⌘⌘k

x̂

i,1 =

j
1�v

i

slope

slow

k

 Notice:      takes a different value for each segment of the map 

In facts, the generated sequence defines which segment of the map is visited at 
each iteration.

v

i+1 = mod

✓
slope

fast

✓
1�mod

✓
1� v

i

slope

slow

, 1

◆◆
, 1

◆
x̂i
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Implementation of the generating partitions

Equivalent partitions can be used in order to simplify the implementation. By means of 
reversible transformations we can obtain:

x̃

i,0 = mod

⇣
1 +

j
slope

fast

⇣
1�mod

⇣
1�v

i

slope

slow

, 1

⌘⌘k
,M

⌘

x̃

i,1 = mod

⇣
1 +

j
1�v

i

slope

slow

k
,M

⌘

xi,0 = mod

⇣Pi
j=0 x̃j,0,M

⌘

xi,1 = mod

⇣Pi
j=0 x̃j,1,M

⌘

which represent the number of periods per cycle modulo                          of the 
controlled and reference oscillator respectively;

which represent the same quantities but without resetting the counters.

M = dlog2 |k|e
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Why all the system entropy is extracted?

 0

 1
vi+1

viS0 S1 S2 S3

v̂iv̂iv̂i

v̂i+1

The symbols generated by means of a 
generating partition allows to reverse 
(rewind) the system evolution starting 
from the current state. 

In our case, a suitable generating partition 
consists of the partition of the state space in 
the segments S0, S1, S2, S3, where the uni-
dimensional map is invertible.

Since the generated sequence allows to reverse      back to           and, since in a 
reversible transformation entropy si preserved, the                        sequence must 
contain the entropy difference between           and      .

vi vi�n

xi�n, . . . xi

vivi�n
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Source simulation results (slopeRatio = 2[0.5, 1.0, 1.5, 2.0])

Expected entropy per bit: log2(slopeRatio)/4 = log2(2[0.5, 1.0, 1.5, 2.0])/4 = 
                                                          = [0.5, 1.0, 1.5, 2.0]/4 = [0.125, 0.250, 0.375, 0.5]

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conditional Bit Entropy per bit (4 bits per iteration)

Condition depth

H
/b

it

 

 
slope_ratio = 1.4142; slope_fast = 0.8409;
slope_ratio = 1.4142; slope_fast = 1.1892;
slope_ratio = 1.4142; slope_fast = 1.6818;
slope_ratio = 2.0000; slope_fast = 0.7071;
slope_ratio = 2.0000; slope_fast = 1.4142;
slope_ratio = 2.0000; slope_fast = 2.8284;
slope_ratio = 2.8284; slope_fast = 0.5946;
slope_ratio = 2.8284; slope_fast = 1.6818;
slope_ratio = 2.8284; slope_fast = 4.7568;
slope_ratio = 4.0000; slope_fast = 0.5000;
slope_ratio = 4.0000; slope_fast = 2.0000;
slope_ratio = 4.0000; slope_fast = 8.0000;
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• Introduction 

• Implementation overview 

• Chaotic entropy source modelling 
• Summary of known results 
• Bernoulli map and generalised Sawtooth map 
• Why the noise model does not matter 
• Proposed chaotic system 

• Entropy extraction 
• Intuitive operation description 
• Formal operation description 

• Post-processing and output entropy evaluation
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Hashing post-processing implementation
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32-bit SR
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hashing post-processing

:4
en
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4

4 Post-processing consists of a :4 
decimated 32-bit LFSR featuring a 
primitive polynomial feedback. 

Implementation is 4-bit parallel in order to 
accomodate the 4-bit symbols delivered 
by the entropy source. 

Stepping is enabled only when a valid 
symbol is delivered: entropy/bit is 
constant regardless clock frequency. 

Post-processing performs a compression 
of 1/16 in terms of bits and about 1/5.6 in 
terms of entropy.
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Output entropy estimation by means of a suitable 
descrambler predictor of post-processing

Purpose: 
the descrambler performs a reversible 
transformation of the output sequence Y 
which removes the memory introduced 
by the post-processing LFSR thus 
allowing estimating entropy on Z. 

Implementation: 
the descrambler is a self-synchronising 
SR featuring the same primitive 
polynomial as the post-processing LFSR. 

Because of a property of m-sequences, 
despite of the :4 decimation, it can predict 
the deterministic behaviour of the post-
processing LFSR.
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post−processed (compr_ratio = 4)
descrambling discrepancy (compr_ratio = 4)
post−processed (compr_ratio = 8)
descrambling discrepancy (compr_ratio = 8)

Effect of descrambling on post-processing entropy estimation 
(LFSR_Len = 10; slopeRatio = 20.25; slopeFast = 2-0.25)

Simulation on short LFSR, low entropy and low compression makes evident the 
effect of descrambling on entropy estimation.
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Entropy estimation on descrambled sequences 
(LFSR_Len = 32; Compr = 16; Hin = [0.125, 0.25, 0.375])

Descrambling allows to detect a lack of entropy (cyan curve) despite the length of the 
post-processing LFSR is 32.
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DIS: P = 110101001010101100101110110000101;  Hin = 0.125;    compr = 16;
DIS: P = 110101001010101100101110110000101;  Hin = 0.25;    compr = 16;
DIS: P = 110101001010101100101110110000101;  Hin = 0.375;    compr = 16;
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Conclusions

• Stable and robust entropy generation 

• Full digital implementation 

• no additional vulnerability with respect of a P-RBG 

• indistinguishable in the sea-of-gates 

• Much more efficient than a P-RNG 

• Straightforward entropy estimation (both on  source and output data)

Simplicity is a solved complexity 
Constantin Brâncuși 

Romanian sculptor 1876 – 1957

SW used for source simulation, post-processing and entropy estimation is available under request.


