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Introduction

Why ECC:

Short key lengths, ciphertexts and
signatures → smaller storage
Fast key generation
Fast digital signatures

AES RSA ECC
128 3,072 256–383

192 7,680 384–511

256 15,360 512+

High-Speed: High throughput and throughput/area ratio

Lightweight: Moderate throughput/area with minimal
resource usage.
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Elliptic Curves

K = GF(p) K = GF(2  )

Polynomial basis
representation

Normal basis
representation

Elliptic curves built over

m

Elliptic Curve over GF(p)

y 2 = x3 + ax + by 2 = x3 + ax + by 2 = x3 + ax + b
where x , y , a, b ∈ GF (p)

4a3 + 27b2 6≡ 0(modp)
+ a special point called
”the point at infinity O”

K=GF(p): Arithmetic operations present in many libraries

K=GF(2m):

Fast in hardware
Compact in hardware
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NIST Curves

GF (p) denotes a prime field with p elements where p is prime.

GF (2m) denotes a binary field with 2m elements for some m
(called degree of the field)

Recent improvements in attacking discrete logarithms over
small-characteristic fields raised security concerns about binary
curves (applies only to pairings for the time being).

NIST special curves are those whose coefficients and
underlying field have been selected to optimize the efficiency
of the elliptic curve operations.

NIST special primes are of a special type (called generalized
Mersenne numbers) for which modular multiplication can be
carried out more efficiently than in general.
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ECC Operations

Addition Multiplication Squaring

Inversion Division

Point
DoublingAddition

Point
Projective to Affine

Affine to Projective or

Scalar
Multiplication

GF Operations

Cryptographic Protocols

ECC Operations

Interchangeable
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Projective coordinates

Point Addition Point Doubling
Coordinates #Muls #Adds #Invs #Muls #Adds #Invs
A + A =A 3 8 1 4 5 1
P + A =A 13 7 0 N/A
P + P =P 16 7 0 12 4 0
MJ+MJ =MJ 14 7 0 8 14 0

A→Affine; P→Projective; MJ→Modified Jacobian

Affine: Requires time consuming inverse operation
Projective: Only one inversion at the end of a full scalar
multiplication
Modified Jacobian: Proposed by Cohen et al.

Quadruple representation of a point (X ,Y ,Z , aZ 4)
Fast point doubling

Easy conversion between Affine and Modified Jacobian

PA = (x , y) → PMJ = (x , y , 1, a)
PMJ = (X ,Y ,Z , aZ 4) → PA = (X/Z 2,Y /Z 3)
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Montgomery Multiplication

X , Y , M are n-bit numbers, R = 2n, Z = X · Y mod M

Ordinary Montgomery
domain

⇔
domain

X ←→ X
′

= X · R mod M

Y ←→ Y
′

= Y · R mod M

Z ←→ Z
′

= Z · R mod M

X
′ ← X

X
′

= Mont(X ,R2 mod M,M)
= X · R2 · R−1 mod M
= X · R mod M

Z
′ ← X

′ · Y ′

Z
′

= Mont(X
′
,Y
′
,M)

= X
′ · Y ′ · R−1 mod M

= (X · R) · (Y · R)R−1 mod M
= X · Y · R mod M

Z ← Z
′

Z = Mont(Z
′
, 1,M)

= (Z · R) · 1 · R−1 mod M
= Z mod M
= Z
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Montgomery Multiplication Architectures

Tenca and Koc introduced a word-based algorithm for
Montgomery multiplication, called Multiple-Word Radix-2
Montgomery Multiplication (MWR2MM), as well as a scalable
hardware architecture capable of performing the multiplication
operation using a variable number of Processing elements
(PEs). (1999)

The systolic high-radix design by McIvor et al. is capable of
very high speed operation with the penalty of using large area
requirements for fast multiplier units. (2004)

Kaihara et al. proposed a concept which enables parallel
execution of the Montgomery and Interleaved multiplication.
(2005)

Öksüzoğlu et al. reported DSP-based architecture for low-cost
devices. (2008)
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Montgomery Multiplication Implementations

Harris et al. implemented the MWR2MM algorithm by left
shifting one of the operands (Y) and the modulus (M) instead
of right shifting the intermediate result (S). Their approach
led to an improvement in terms of latency and latency × area
by factor of two. (2001)

Suzuki combined MWR2MM with the quotient pipelining
technique and proposed an architecture which can be mapped
efficiently onto modern high-performance DSP-oriented FPGA
structure. (2007)

Huang et al. proposed two architectures to optimize the
original MWR2MM algorithm to process n-bit precision
multiplication in approximately n clock cycles by
precomputing intermediate S values. (2011)
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ECC Scalar Multiplier Architectures

Örs et al. introduced a module-based design for ECC
processors over GF(P). The architecture is suitable for any
prime field and any prime. The design uses Montgomery in a
systolic array architecture to perform modular multiplication.
(2003)

Güneysu and Paar designed an ECC processor over GF(P)
that is optimized for NIST P-224 and P-256 curves. They
combine their multiplier and adder into a single unit and make
use of DSP units found in FPGAs to perform fast
multiplication and reduction operations. (2008)

MuthuKumar and Jeevananthan proposed a high-speed ECC
scalar multiplier over GF(P) and GF(2m) for key-size of
256-bits. They use Jacobian coordinates and Montgomery
multipliers built of 16 x 16 multiplication units. (2010)

CryptArchi 2016 J.-P. Kaps, A. Salman, A. Ferozpuri, et al. Scalable ECC Processor, High-Speed – Lightweight 11 / 34



Introduction
Previous Work

Implementation
Results and Conclusions

Montgomery Multiplication
ECC Scalar Multiplication

ECC Scalar Multiplier Implementations

Q. Xu et al. designed a low area ECC multiplier that supports
NIST P-160, P-192, and P-256 curves. They proposed a tiny
hardware module targeting ASICs. The design has counter
measures to side-channel attacks (SPA), while having average
performance. (2008)
Alrimeih et al. implemented a hardware/software co-design for
ECC processor to perform the scalar multiplication over
GF(P). Supports all five prime fields recommended by NIST
but also limited to and optimized for their corresponding
primes. (2014)
Sasdrich and Güneysu implemented a hardware accelerator for
ECC point multiplication. The design is limited to Curve
25519 using pseudo Mersenne primes. Their work was
expanded later to include techniques for counter measures
against SPA and DPA attacks. (2015)
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Design Decisions

Generalized for all GF (P) curves for a specified field size

External Memory usage
Support for ASIC implementations
Unified high-speed and lightweight storage requirements

Support for all 5 NIST field sizes for a wide range of
applications

Not limited to special primes
Optimizations for special primes might be patent restricted
Generic design for FPGA and ASIC, not targeted for special
FPGA features: e.g. DSP.

High-speed design uses different word sizes (16, 32, and 64)
to achieve high throughput

Lightweight design uses a variable number of PE units (2, 4,
or 8) to increase flexibility while maintaining low area
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Top Level Architecture

FIFO interface

Independent initialization of field and curve parameters.

Interface with external memory for ASIC implementations

Modular Montgomery Multiplication (MMM)

Modular Addition and Subtraction (MAS)

MMM

W

MAS

W

ECC

busy

Scheduler

Mem_Ctrl

di_valid

di_data

di_ready

start

init_field

init_curve

do_data

do_valid

do_ready

RAM1 RAM2

rstclk
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Scheduler

Start

Conversion
Normal to Montgomery

Conversion
Projective to Affine

Conversion
Montgomery to Normal

Outputs

Scalar Multiplication

Scalar Multiplication k · P
Require: Prime p, P = (x , y) ∈ GF (p)

k ∈ Z , 0 < k < p,
k = (kl−1, kl−2, . . . , k0)2, kl−1 = 1

Ensure: Q = (x ′, y ′)
Q = P
for i = l − 2 downto 0 do

Q = 2Q
if ki = 1 then

Q = Q + P
return Q

Each state has its own controller making the design modular.

start signal triggers a state to begin operation and hands
control back to the scheduler by returning a done signal.
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Scheduler: EC Point Addition

Algorithm 3(a)[1] Control ROM: Q = P + Q

Require: P1 = (x , y , 1, a), P = (xR,yR,1,a),Q = (X q,Y q,Z q,aZ qˆ4)
P2 = (X2,Y2,Z2, aZ4

2 ) Multiplier Adder
Ensure: P1 + P2 = P3 = (X3,Y3,Z3, aZ4

3 ) Res OP1 OP2 Res OP1 OP2
Ops

1: T1 ← Z2
2 T 1 Z q Z q mul

2: T2 ← xT1 T 2 xR T 1 mul
3: T1 ← T1Z2 T3← X2 − T2 T 1 T 1 Z q T 3 X q T 2 mulsub
4: T1 ← yT1 T 1 yR T 1 mul
5: T4 ← T 2

3 T5← Y2 − T1 T 4 T 3 T 3 T 5 Y q T 1 mulsub
6: T2 ← T2T4 T 2 T 2 T 4 mul
7: T4 ← T4T3 T6← 2T2 T 4 T 4 T 3 T 6 T 2 T 2 muladd
8: Z3 ← Z2T3 T6← T4 + T6 Z q Z q T 3 T 6 T 4 T 6 muladd
9: T3 ← T 2

5 T 3 T 5 T 5 mul
10: T1 ← T1T4 X3 ← T3 − T6 T 1 T 1 T 4 X q T 3 T 6 mulsub
11: aZ4

3 ← Z2
3 T2← T2 − X3 aZ qˆ4 Z q Z q T 2 T 2 X q mulsub

12: T3 ← T5T2 T3 T 5 T 2 mul
13: aZ4

3 ← (aZ4
3 )2 Y3 ← T3 − T1 aZ qˆ4 aZ qˆ4 aZ qˆ4 Y q T 3 T 1 mulsub

14: aZ4
3 ← a(aZ4

3 ) aZ qˆ4 aR aZ qˆ4 mul

[1] S.B. Örs, L. Batina, B. Preneel, and J. Vandewalle, “Hardware Implementation
of an Elliptic Curve Processor over GF (p),” in ASAP 2003, IEEE, Jun 2003.
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Scheduler: EC Point Doubling

Algorithm 3(b)[1] Control ROM: Q = 2Q
Q = (X q,Y q,Z q,aZ qˆ4)

Require: P1 = (X1,Y1,Z1, aZ4
1 ), Multiplier Adder

Ensure: 2P1 = P3 = (X3,Y3,Z3, aZ4
4 ) Res OP1 OP2 Res OP1 OP2

Ops

1: T1← Y 2
1 T2 ← 2X1 T 1 Y q Y q T 2 X q X q muladd

2: T3← T 2
1 T2 ← 2T2 T 3 T 1 T 1 T 2 T 2 T 2 muladd

3: T1← T2T1 T3 ← 2T3 T 1 T 2 T 1 T 3 T 3 T 3 muladd
4: T2← X 2

1 T3 ← 2T3 T 2 X q X q T 3 T 3 T 3 muladd
5: T4← Y1Z1 T3 ← 2T3 T 4 Y q Z q T 3 T 3 T 3 muladd
6: T5← T3(aZ4

1 ) T6 ← 2T2 T 5 T 3 aZ qˆ4 T 6 T 2 T 2 muladd
7: T2← T6 + T2 T 2 T 6 T 2 add
8: T2← T2 + (aZ4

1 ) T 2 T 2 aZ qˆ4 add
9: T6← T 2

2 Z3 ← 2T4 T 6 T 2 T 2 Z q T 4 T 4 muladd
10: T4← 2T1 T 4 T 1 T 1 add
11: X3 ← T6 − T4 X q T 6 T 4 sub
12: T1← T1 − X3 T 1 T 1 X q sub
13: T2← T2T1 aZ4

3 ← 2T5 T 2 T 2 T 1 aZ qˆ4 T 5 T 5 muladd
14: Y3 ← T2 − T3 Y q T 2 T 3 sub

[1] S.B. Örs, L. Batina, B. Preneel, and J. Vandewalle, “Hardware Implementation
of an Elliptic Curve Processor over GF (p),” in ASAP 2003, IEEE, Jun 2003.
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Memory

Nr RAM idx Name
0 0 0 Rˆ2 mod M
1 0 1 a
2 0 2 x
3 0 3 y
4 0 4 R
5 0 5 X q
6 0 6 Y q
7 0 7 Z q
8 0 8 aZ qˆ4
9 0 9 T 1

10 0 10 T 2
11 0 11 T 3
12 0 12 T 4
13 0 13 T 5
14 0 14 T 6
15 0 15 MSB521(0-14)
16 1 0 M
17 1 1 M-2
18 1 2 K
19 1 3 MSB521(16-18)

We need to store 18 operands, incl. temporary
values, each of size 521 bits.

Memory 1: 16 x 512 bits, Memory 2: 4 x 512 bits.

9 MSB bits of 521-bit operands are stored in
MSB521 locations and packed if w = 64.
Example:

w

X_q

0101100
0101011
0101010
0101001
0101000
Address
Virtual

X_q

010100

w

010101
010110
010111

MSB0

011101
011110
011111

011100
Address
Physical

01

w
Address
Physical

MSB

MSB

RAM
idx

X_q

101
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Modular Adder Subtracter (MAS)

0

w−1
1

0 0

w−1

0

w
w

w

F
F 1

0

0

w−1

0

w−1

0

w

w
w

B

lastadd/subtract 10

0

w
w

B>A

C

first

sign

A

All supported field
sizes except 521
are divisible by 16
and 32.

Storing them in
word-size memory
does not leave
space for sign.

Subtraction mod 241

01001 01001 153
11011 00110 - 73
1 111←11111 carry
00101 10000
0101 0000 80

Positive result ⇒
Done.

Subtraction mod 241

00100 01001 73
10110 00110 - 153
1 1←11111 carry
11011 10000
1011 0000 -80

Negative result ⇒
addition of modulus.

Addition mod 241

01111 00001 241
11011 00000 + -80
1111 ← carry
01010 00001
1010 0001 161
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Modular Montgomery Multiplier (MMM)

Optimized MWR2MM [3]

1: if j = 0 then

2: qi = (xi · Y
(0)
0 )⊕ S

(0)
1

3: C (0) = 0
4: if j < e − 1 then

5: (CO(j+1),SO
(j)
w−1, S

(j)
w−2...0) = (1, S

(j)
w−1...1) + C (j) + xi · Y (j) + qi ·M(j)

6: (CE (j+1), SE
(j)
w−1,S

(j)
w−2...0) = (0, S

(j)
w−1...1) + C (j) + xi · Y (j) + qi ·M(j)

7: if S
(j+1)
0 = 1 then

8: C (j+1) = CO(j+1)

9: S
(j)
w−1...1 = (SO

(j)
w−1, S

(j)
w−2...1)

10: else
11: C (j+1) = CE (j+1)

12: S
(j)
w−1...1 = (SE

(j)
w−1, S

(j)
w−2...1)

13: else
14: (C (e), S(e−1)) = (C (e), S

(e−1)
w−1...1) + C (e−1) + xi · Y (e−1) + qi ·M(e−1)

Task E

Task D

Task F

[3] M. Huang, K. Gaj, and T. El-Ghazawi. “New hardware architectures for
Montgomery modular multiplication algorithm,” in IEEE ToCo, 60(7), pp
923–936, Jul, 2011.
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High-Speed Design

(e−1)−bit SREG X

3
e  =

w

256
4

e  =
w

384
1

e  =
192

w 2
e  =

224

w 5
e  =

w

521

S
(e −2)r

S
(e −1)

0
r

i−(e −2)r

i−(e −2)r

E
PE#

(e −2)rM

S
(e −1)r

S
(e  )

0
r

i−(e −1)r

S
(e +1)

0
r

S
(e  )r

i−(e )r

E
PE#

E
PE#

S
0

5(e  −1)

i−(e  −2)5

S
(e  −2)5

i−(e  −2)5

(e −1)rM

i−(e −1)r

(e )rM

(e −1)rYr(e −2)
Y

ri−e

F
PE#

i−(e  −1)5

i−(e  −1)5

S 5(e  −1)

(e  −2)5M
(e  −1)5M

(e  −2)5Y
(e )rY

(e  −1)5Y

(e  −1)5C
(e  +1)rC

(e )rC
(e  −1)rC

S
(0)

q
i

X
i

q
i−1

X
i−1

S
(1)

C
(2)

C
(1)

M
(1)

Y
(1)

Y
(0)

M
(0)

S
0

(1)
S

0

(2)

(e−1)−bit SREG q

w = 16, 32 or 64 

q

X
E/F_sel

PE#
E/F

X

q

X

q

X

q q

X

e  −2r e  −1r
e r e  −25 e  −150 1

PE#
E

PE#
D

Based on Architecture 2 of [3].
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Lightweight Design

S(1)
0

S (1)w
−1...1

M(1)Y(1)

,
(1

)
i

C ,q
i

x
i

S(1)
0

S(2)
0

S (2)w
−1...1

M(2)Y(2)

,
(2

)
i

C ,q
i

x
i

S (1)w
−1...1

S(j)
0

S (j)w
−1...1

M(j+2)Y(j+2)

,q
i+

2
x

i+
2

(j
+

2
)

i+
2

C
,

S(1)
0

S (1)w
−1...1

M(1)Y(1)

,q
i+

1
x

i+
1

(1
)

i+
1

C
,

S (0)w
−1...1

M(0)Y(0)

x
i+

1

S(2)
0

(3
)

i
C

(e
)

i
C

=

S (2)w
−1...1

C(e)
i−1

(3
)

i+
1

C

S(2)
0

S (2)w
−1...1

M(2)Y(2)

,q
i+

1
x

i+
1

(2
)

i+
1

C
,

(e
)

i+
1

C
=

S (0)w
−1...1

M(0)Y(0)x
i

S (0)w
−1...1

iPE i+1PE

D

F

E D

EF

c
lk

 i
+

1
c
lk

 i
+

2
c
lk

 i
+

3
c
lk

 i
+

4
c
lk

 i
+

5

Based on
Architecture 1 [3].

Each PE is capable of
performing E, D, and
F operations.

If #PEs < e, we
must store inbetween
values in a queue of
size e − p.

S
(1)

S
(2)

S
(1)

S
(0)

S
(1)

S
(1)

S
(2)

S
(1)

S
(2)

S
(2)

S
(2)

S
(1)

S
(0)

S
(1)

S
(2)

S
(1)

S
(2)

S
(2)

S
(1)

S
(0)

S
(0)

S
(0)

S
(0)

S
(0)

S
(0)

S
(0)

w=2

n=6

e=3

p=2

2

1

3

4

PE#1

Q#1

PE#2

8

9

5

6

7

t

10

Task E

Task D

S
(2)

Task F
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Reading and Reformatting xi

000

xw−1xw−p+1

01

xw−p

wX(j)
x2p+2

xw−p+2

xp+2

x2

x3p−1

xp−1

x2p−1

x2p+1

xp+1

x1

x2p

xp

x0

0 0  0 0 

enenenen

xi+2
xi+p−1xi+1xi

4

A B C D

1 2 30

sreg E

enenenen

load
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Test Setup

Embedded memories are used only for “external RAM”.
All implementations are coded in VHDL and do not use any
other embedded resources.
Implemented using Xilinx ISE 14.7 and Quartus Prime 16.0
Optimized using ATHENa.
All results are post place-and-route.

Xilinx Altera
Device Technology Device Technology

Cyclone-IV 60 nm
Spartan6 45 nm
Virtex6 40 nm Stratix-IV 40 nm
Artix7 28 nm Cyclone-V 28 nm
Virtex7 28 nm Stratix-V 28 nm
Zynq 28 nm
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Latency and Throughput for a given field and width

Field size
Latency in clock cycles

TP in Op/sec
at f =100 MHz

W=64 W=32 W=16 W=64 W=32 W=16
192-bit 738,000 808,690 950,872 135.5 123.7 105.2
224-bit 1,000,500 1,083,582 1,267,434 100.0 92.3 78.9
256-bit 1,254,505 1,357,423 1,580,910 79.7 73.7 63.3
384-bit 2,791,687 3,021,972 3,482,490 35.8 33.1 28.7
521-bit 5,208,245 5,663,007 6,572,623 19.2 17.7 15.2

Average 2,198,587 2,386,935 2,770,866 45.5 41.9 36.1
TP→ Throughput; Op→ Opearations; F → Frequency

Average TPs are based on average latencies.
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Implementations results of high-speed design on Xilinx
FPGAs

Width Slices LUTs FFs BRAMs
Clock f TP TP/Area

[Cycles] [MHz] [Op
sec ] [ Op

Slices·sec ]
Virtex7-xc7vx485tffg1761-3

64 1,057 3,184 4,668 8 2,198,857 184 83.533 0.079
32 1,038 3,063 4,562 4 2,386,935 215 90.057 0.084
16 1,313 2,691 4,596 2 2,770,886 229 82.510 0.063

Virtex6-xc6vlx240tff1156-3
64 1,125 3,216 4,668 8 2,198,857 163 73.933 0.066
32 1,029 3,028 4,562 4 2,386,935 200 83.823 0.081
16 1,208 2,763 4,596 2 2,770,886 227 81.818 0.068

Zynq-xc7z020clg484-3
64 993 3,265 4,668 8 2,198,857 121 52.219 0.056
32 1,141 2,906 4,562 4 2,386,935 159 66.436 0.058
16 1,085 2,890 4,596 2 2,770,886 170 61.252 0.056

TP is calculated using the average latency at maximum frequency
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Implementations results of high-speed design on Altera
FPGAs

Width ALMs FFs MBits
Clock f TP TP/Area

[Cycles] [MHz] [Op
sec ] [ Op

Slices·sec ]

Stratix V-5SGXEA7K2F40C3
64 3,145 5,336 20,480 2,198,857 311 141.605 0.045
32 2,719 5,125 20,480 2,386,935 355 148.772 0.055
16 2,735 5,082 20,480 2,770,886 420 151.447 0.055

Stratix IV-EP4SE530H35C4
64 3,818 4,667 20,480 2,198,857 277 103.280 0.027
32 3,587 4,575 20,480 2,386,935 268 112.286 0.031
16 3,585 4,607 20,480 2,770,886 291 105.126 0.029

TP is calculated using the average latency at maximum frequency
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Power measurements using Xpower Analyzer

Dev.
Avail.

Width
Pstatic Pdynamic Ptotal

LUTs [mW] [mW] [mW]

VX7 303,600
64 241 52 293
32 241 31 272
16 241 30 271

VX6 150,720
64 3,424 86 3,510
32 3,423 45 3,468
16 3,423 54 3,477

ZQ 53,200
64 113 51 164
32 133 31 164
16 113 33 146

AX7 63,400
64 82 47 129
32 82 32 114
16 82 32 114

SN6 9,112
64 20 28 48
32 20 4 24
16 20 18 38

VX→Virtex; SN→Spartan; AX→Artix; ZQ→Zynq

Results are generated under the
following conditions:

Clock at 100 MHz.

10 randomly generated
values of k for each of the
five fields.

Size of k is equal to curve
field size.

Static power of VX6 as
reported by tool does not
seem correct.

CryptArchi 2016 J.-P. Kaps, A. Salman, A. Ferozpuri, et al. Scalable ECC Processor, High-Speed – Lightweight 30 / 34



Introduction
Previous Work

Implementation
Results and Conclusions

Results
Conclusions

Comparison of high-speed results

Work Device
Curve

Slices LUTs DSPs BRAMs
f TP TP/Area

Size Type [MHz] [ Op
sec

] [ Op
Slices·sec ]

TW[W=32] VX-6

192 GF(P)

1,029 3,028 0 4 200

247 0.240
224 GF(P) 185 0.179
256 GF(P) 147 0.143
384 GF(P) 66 0.064
521 GF(P) 35 0.034

Alrimeih et al. VX-6

192 P-192

11,200 32,900 289 128 100

3,334 0.298
224 P-224 2,858 0.255
256 P-256 2,500 0.223
384 P-384 848 0.076
521 P-521 625 0.056

Roy et al. VX-5 256 P-256 81 212 8 22 172 91 1.123

Baldwin et al. VX-5
192 GF(P) 6,100 97 488 0.320
256 GF(P) 7,800 82 248 0.127

TW→This Work; VX→ Virtex
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Other results

Work Device
Curve Slices

LUTs DSPs BRAMs
f TP TP/Area

Size Type (ALM*) [MHz] [ Op
sec

] [ Op
Slices·sec ]

Ghosh et al. VX-4
192 GF(P) 14,900 53 286 0.019
224 GF(P) 17,300 47 186 0.011
256 GF(P) 20,100 43 130 0.006

Ananyi et al. VX-4

192 P-192

20,800 32

60 239 0.011
224 P-224 61 197 0.009
256 P-256 62 164 0.008
384 P-384 63 58 0.003
521 P-521 64 26 0.001

Güneysu et al. VX-4
224 P-224

24,452
32,688 468 198 372 30,438 1.245

256 P-256 34,896 512 176 375 19,760 0.804
Güneysu et al. VX-4 256 P-256 1,715 32 490 2,020 2.356
McIvor et al. VX-2 256 GF(P) 15,755 256 40 260 0.017
Guillermin SX-II 256 GF(P) 9,177∗ 96 157 1,471 0.160

Schiniakis et al. SX-II

192 GF(P) 6,200∗ 92 161 2,273 0.367
256 GF(P) 9,200∗ 96 157 1,471 0.160
384 GF(P) 13,000∗ 177 151 741 0.057
521 GF(P) 17,000∗ 244 145 449 0.026

VX→ Virtex; SX→Stratix;
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Conclusions

We designed two implementations of a scalable ECC
processor, one for high-speed and one lightweight.

Unlike many published results, our processor is not limited to
NIST primes.

Our TP/Area results are slightly lower than the high-speed
design by Alrimeih, however, we use only a fraction of the
BRAMs and no DSP units, neither contribute to TP/Area.

The final version of our presentation will also contain results
of our lightweight implementation.
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Thanks for your attention.

CryptArchi 2016 J.-P. Kaps, A. Salman, A. Ferozpuri, et al. Scalable ECC Processor, High-Speed – Lightweight 34 / 34


