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Entropy of PUFs

...

PUF 1

PUF 2

PUF M

i.i.d.

PUFs are instanciations of blueprints by a fab plant
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After fabrication (estimation P̂)
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(b)

Which PUF is the most entropic?

Recall H =
0xff...ff∑

c=0x00...00

P(R = PUF(c)) logP(R = PUF(c)).
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Before fabrication

Stochastic model

Active discussion at ISO sub-committee 27:
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Non-delay PUF: SRAM PUF

elt. 2

...

c

Bc

elt. 1 elt. n

Challenge:

Response:

Amount of entropy: = n.
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Delay PUF: core delay element

d(ci)

dT1
i dT2

i

dB1
i dB2

i

ci

yi = xi+1yi−1 = xi

i
−

1
el
em

en
t

el
em

en
t

i
+
1

Same idea as in other delay PUFs, like arbiter-PUF, etc.
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Let d(ci) be the corresponding delay. As time is an extensive physical quantity:

d(ci) =

{
dT1
i + dB2

i = dTBi if ci = −1,

dB1
i + dT2

i = dBTi if ci = +1.

The delays dTBi and dBTi are modeled as i.i.d. normal random variables selected at
fabrication [PDW89].

Figure : Monte-Carlo simulation (with 500 runs) of the delays in a chain of
60 basic buffers implemented in a 55 nm CMOS technology.
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Delay PUF: Loop PUF

...

=N+1

+1

elt. 1 elt. 2 elt. n

challenge c

d(c)

start
clock

loop

done

Amount of entropy: > n?

Nota bene: here, d(c) is expressed in number of clock cycles.
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LPUF is not self-contained
It needs a protocole

n i.i.d. normal
Response Bc ∈ {±1}
Bc = sign(

∑n
i=1 ci∆i)

Loop-PUF:

random variables ∆i

Challenge c ∈ {±1}n

input : Challenge c
output: Response Bc

1 Measure d1 ← bN
∑n

i=1 d(ci)c
2 Set challenge −c
3 Measure d2 ← bN

∑n
i=1 d(−ci)c

4 return Bc = sign(d1 − d2)

Algorithm 1: Protocole to get one bit out LPUF.
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Our result: RAM-PUF vs Loop-PUF

For n = 8

SRAM-PUF LPUF
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Challenge

Definition

A challenge c is a vector of n control bits c = (c1, c2, . . . , cn) ∈ {±1}n.
Let ∆1,∆2, . . . ,∆n be i.i.d. zero-mean normal (Gaussian) variables
characterizing the technological dispersion. A bit response to
challenge c is defined as

Bc = sign(∆c) ∈ {±1} (1)

where
∆c = c1∆1 + c2∆2 + · · ·+ cn∆n. (2)
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Challenge code

Definition

A challenge code C is a set of M n-bit challenges that form a (n,M)

binary code. We shall identify C with the M× n matrix of ±1’s whose
lines are the challenges.
The M codewords and their complements are used to challenge the
PUF elements. The corresponding identifier is the M-bit vector

B = (Bc)c∈C . (3)

The entropy of the PUF responses is denoted by H = H(B).
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Orthant probabilities

Let X1,X2, . . . ,Xn be zero-mean, jointly Gaussian (not necessarily
independent) and identically distributed. As a prerequisite to the
derivations that follow, we wish to compute the orthant probability

P(X1 > 0,X2 > 0, . . . ,Xn > 0).

The probabilities associated to other sign combinations can easily be
deduced from it using the symmetry properties of the Gaussian
distribution.
Since the value of the orthant probability does not depend on the
common variance of the random variables we may assume without
loss of generality that each Xi has unit variance: Xi ∼ N (0,1). The
orthant probability will depend only on the correlation coefficients

ρi,j = E(XiXj) (i 6= j). (4)
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Some lemmas

Lemma (Quadrant probability of a bivariate normal)

P(X1 > 0,X2 > 0) =
1

4
+

arcsin ρ1,2

2π
. (5)

Lemma (Orthant probability of a trivariate normal)

P(X1 > 0,X2 > 0,X3 > 0) =
1

8
+

arcsin ρ1,2 + arcsin ρ2,3 + arcsin ρ1,3

4π
. (6)

Lemma (No closed formula for n > 3 exists. . . )
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Main Result: Hadamard Codes

We have M responses bits, so H(B) ≤ M bits.
When is it possible to have the maximum value H(B) = M bits?

Theorem

H(B) = M implies M ≤ n.
H(B) = M = n bits if and only if C is a Hadamard (n,n) code.

Proof.

H(B) = M means that all bits Bc are independent, i.e., all
Yj =

∑n
i= ciXi’s are independent (uncorrelated), i.e., all M (n-bit)

challenges c(j) are orthogonal.
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Hadamard Codes

n orthogonal binary ±1 vectors form an Hadamard code:

n = 1 C = (1), H = 1 bit;

n = 2 C =

(
1 1
1 −1

)
, H = 2 bits;

n = 3 No Hadamard code! but any (3,3)code ≡
(

1 1 1
−1 1 1

1 −1 1

)

for which Σ = 1
3CCt =

(
1 1/3 1/3

1/3 1 −1/3
1/3 −1/3 1

)
gives

H = −6
(

1
8 + arcsin 1/3

4π

)
log
(

1
8 + arcsin 1/3

4π

)

− 2
(

1
8 − 3arcsin 1/3

4π

)
log
(

1
8 − 3arcsin 1/3

4π

)

≈ 2.875 < 3 bits.
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Hadamard Codes (cont’d)

n=4




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


, H = 4 bits

n=8




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




, H = 8 bits
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Hadamard Codes (cont’d)

n=12




1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1 1 1 −1 −1 −1 1 1 1 −1 −1 −1
1 1 −1 1 −1 −1 1 −1 −1 1 1 −1
1 1 −1 −1 1 −1 −1 1 −1 1 −1 1
1 1 −1 −1 −1 1 −1 −1 1 −1 1 1
1 −1 −1 −1 1 1 1 1 −1 −1 1 −1
1 −1 1 1 −1 −1 −1 1 −1 −1 1 1
1 −1 1 −1 −1 1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 1 −1 1 1 1 −1 −1
1 −1 −1 1 1 −1 1 −1 1 −1 −1 1
1 −1 1 −1 1 −1 −1 −1 1 1 1 −1




H = 12 bits
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Beyond n bits

n = 1 element =⇒ H = 1 bit;

n = 2 elements =⇒ H = 2 bits;
H = M (max entropy = number of challenges) =⇒ H ≤ n bits.

Common belief that n elements give at most n bits of entropy (SRAM
PUFs, delay PUFs).

Q Can we obtain more than n bits by taking more
challenges: M > n ?

A Yes!
n < H < M

For n elements, using M > n challenges, the entropy can increase
beyond n bits, albeit strictly < M.
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n = 3 elements

M = 1 C1 = ( 1 1 1 ) gives H = 1 bit.

M = 2 C2 =
(

1 1 1
1 1 −1

)
gives H =

−
( 1

2 +
arcsin 1/3

π

)
log

( 1
4 +

arcsin 1/3

2π

)
−

( 1
2 − arcsin 1/3

π

)
log

( 1
4 − arcsin 1/3

2π

) ≈ 1.966 bits.

M = 3 C3 =
(

1 1 1
1 1 −1
1 −1 1

)
gives H =

−
( 3

4 +3
arcsin 1/3

2π

)
log

( 1
8 +

arcsin 1/3

4π

)
−

( 1
4 −3

arcsin 1/3

2π

)
log

( 1
8 −3

arcsin 1/3

4π

) ≈ 2.875 bits.

M = 4 C3 =

( 1 1 1
1 1 −1
1 −1 1
−1 1 1

)
gives ≈ 3.666 bits
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n = 4 elements

C8 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1




H = 6.251 bits.
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n = 8 elements, etc.

Hn

n

26 / 29 June 23, 2016 Sylvain Guilley A Challenge Code for Maximizing the Entropy of PUF Responses



n = 8 elements, etc.
Hn

n

26 / 29 June 23, 2016 Sylvain Guilley A Challenge Code for Maximizing the Entropy of PUF Responses



Outline
Entropy of PUF

Concept
Estimation
Prevision

Running example: the Loop-PUF (LPUF)
SRAM PUF example
L-PUF into details [CDGB12]

Theory
Definitions
Results
Main result

Beyond n bits
Conclusions

27 / 29 June 23, 2016 Sylvain Guilley A Challenge Code for Maximizing the Entropy of PUF Responses



Conclusions and Perspectives

Conclusions

Hn = n bits of entropy obtained using a Hadamard challenge
code;

Hn > n bits of entropy obtained using a challenge code made of
several Hadamard “chunks”

Related talk given at ISIT 2016 [RSGD16]:
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http://www.isit2016.org/
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