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Abstract —Due to the evolution in the IC supply chain, IPs 
and dies come from numerous, and possibly untrusted, sources. 
This loss of control over the entire production flow may thus 
lead to several threats including mask theft, overproduction, as 
well as the insertion of malicious alterations to the circuits, 
referred to as Hardware Trojans (HTs). To protect circuits 
from overproduction, the target circuit’s function can be 
masked so that only authorized customers can use them. In this 
paper, we propose a masking technique for prevention of 
overproduction that also helps thwarting HT insertion.  

Index Terms — Hardware Trojan; Logic Masking; Design 
for Hardware Trust; Logic testing. 

I.  INTRODUCTION 
With ever-shrinking transistor technologies, the cost of 

new fabrication facilities is becoming prohibitive and 
outsourcing the fabrication process to low-cost locations has 
become a major trend in Integrated Circuits (ICs) industry in 
the last decade. In addition, the complexity of today 
integrated system requires the use of third party Intellectual 
Property (IP) cores. This raises the question about untrusted 
foundries and IP suppliers and therefore hardware piracy: 
mask theft and overproduction [1] as well as the insertion of 
malicious circuitry or alterations, referred to as Hardware 
Trojans (HTs) [2, 3, 4]. Two challenges arise: protect the 
ICs from mask theft and overproduction as well as be able to 
verify the trustworthiness of the manufactured ICs. 

In order to protect ICs from theft and overproduction, the 
functionality of the ICs can be masked so that only 
authorized users can properly use them. This procedure, 
often referred to as encryption in literature [5, 6, 7], is 
achieved by the addition of a key, which the correct value 
must be provided for the proper operation of the ICs. 

In order to protect ICs from HTs, several methods have 
been proposed that aim at detecting their presence. HTs 
detection methods are divided into two categories: methods 
based on side-channel analysis [8, 9], or logic testing [10, 
11, 12]. Side channel analysis methods focus on observing 
some physical parameters of the circuit, such as power 
consumption [8] or timing [9]. Relying on golden ICs (i.e. 
circuit that have been ensured to be HT-free by destructive 
methods), a comparison is made with the circuits under test. 
The assumption is that the introduction of additional logic 
gates should become visible because of an increase of the 
power consumption of the circuit or an increase of the delay 
in the logic path containing the HT. However, the main 
weakness of these methods is to manage environment 

variations. The second category relies on testing-based 
approaches. These methods focus on so-called rare values 
based HTs i.e. HTs that aim at modifying the functionality 
of a circuit under very rare conditions as introduced in [10]. 
The main concern is therefore to be able to activate potential 
HTs i.e. find test vectors that can maximize the chances of 
activating the HTs [11, 12]. 

In addition to detection methods, so-called design for 
hardware trust methods aim at improving HT detectability 
or preventing an attacker from inserting HT thanks to 
specific design rules [13]. These methods can e.g. modify 
the state machine [14, 15] or the combinational logic [16, 
17]. 

The insight of using logical encryption in order to fight 
against HTs has recently been introduced in [18]. In this 
paper, we propose such a technique whose general idea is to 
minimize so-called rare values in a circuit (i.e. low 
controllable signals). Assuming that a HT requires a 
triggering condition and that an attacker is likely to attach 
this condition on signals with low controllability in order to 
make the HT stealthy, the minimization of these rare values 
is supposed to make it harder for an attacker to exploit them 
to incorporate a HT’s trigger. 

The first contribution of this paper is a novel structural 
modification using XOR/XNOR gates as well as complex 
logic functions (e.g. Z=A.B+C) referred as ANDORI gates. 
The second contribution of this paper is an iterative 
algorithm that allows resulting in less impact on the original 
circuit in terms on extra delays and area for the same 
improvement in terms on controllability. Compared to the 
method presented in [18], the proposed approach differs in 
signal selection and structural modification. As presented in 
Section IV, it results in better controllability improvements. 

This paper is organized as follows. In Section II, we 
recall existing “encryption” methods, HTs detection 
methods as well as design-for-Hardware-Trust methods. In 
Section III, we present our logic masking technique. 
Experimental data are reported in Section IV. Finally, 
Section V concludes the paper. 

II. PRIOR WORK 

A. Fight against overproduction 

As introduced in [6], logic encryption means hiding the 
hardware functionality (not encrypting the design by a 
cryptographic algorithm). 
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The terms obfuscation and masking are also used in 
literature. Whatever the term used, the goal is to protect ICs 
from mask theft and overproduction by preventing 
unauthorized IC use thanks to extra logic that changes the 
circuit functionality when a proper key is not provided. This 
way, only authorized users (who know the key) can use the 
ICs. We will use for each paper the term used by the authors 
concerning the technic. Logic masking will be used for the 
proposed approach. 

1) Combinational encryption 
The combinational encryption technique proposed in [5] 

consists in randomly inserting XOR/XNOR gates into the 
design. One input of each of these gates is connected to an 
original circuit signal while the other one is controlled by a 
bit of the key. For proper IC use, the correct key value must 
be given so that the newly added gates do not inverse the 
value of the signals they are connected to. 

However, a random insertion of the encryption gates 
cannot ensure that wrong keys corrupt the outputs as 
wanted: if a wrong key produces a correct output, or affects 
only one or a few bits of the output, this renders the 
encryption procedure weak, as explained in [6]. In this 
paper, an improvement of the previous approach is 
presented that aims at ensuring that any wrong key affects 
half of the output bits. The goal is to make it difficult for an 
attacker to find the secret key. The encryption procedure 
inserts XOR/XNOR, and the places to insert these gates are 
therefore chosen in order to achieve 50% Hamming distance 
between the correct and the wrong outputs. 

2) Sequential encryption 
A so-called netlist level obfuscation is presented in [7]. 

The goal is to combine a combinational encryption and a 
sequential encryption i.e. a modification of the state 
transition function (FSM). The newly inserted FSM defines 
two modes of operations: the normal and the obfuscated 
mode. By default, the IC is in obfuscated mode (FSM output 
= ‘1’) and the key (a specific input sequence) allows 
toggling from the obfuscated mode to the normal one (FSM 
output = ‘0’). The combinational encryption is made with 
the addition of XOR gates connecting the FSM output and 
several signals in the circuit. Original signals are thus 
inverted in obfuscated mode thanks to the FSM output. The 
choice is made to encrypt signals with large fan-in and fan-
out cones, assuming that modification of such nodes will 
affect a larger number of internal nodes and primary 
outputs. 

B. Fight against HTs insertion 

 
Figure 1. Rare value HT circuit model. 

1) Logic testing and HT activation 
In order to be able to detect a HT by logic testing, the 

main concern is to activate the HT in order to obtain an 
erroneous output. As introduced in [10], a HT is described 
in terms of its activation mechanism (referred as the 
triggering condition or trigger) and the introduced effect 
(referred as the payload) (cf. Fig. 1). Based on the 
assumption that the HT activation should occur under very 
rare conditions in order to minimize/avoid detection at test 
time, the goal is to create pattern generation techniques 
dedicated to detection of HTs, i.e. aiming at producing a 
reduced set of patterns that maximizes the chances of 
triggering potential HTs. 

In [10], the main assumption is that triggers are supposed 
to depend on the least controllable signals, and payloads on 
the least observable signals. The goal is then to find the 
“most likely signals” on which an attacker could have 
attached a HT trigger and stitched a HT payload, and then, 
to generate patterns that aim at activating the potential 
triggers and propagating the potential payloads.  

In [11], Chakraborty et al. propose a methodology called 
Multiple Excitation of Rare Occurrence (MERO). The idea 
is to improve the previous work by activating each potential 
trigger a given number of times.  

In [12], the goal is the same, but several criteria are 
considered to better reflect the choices that may be made by 
an attacker for inserting HTs, assuming that she/he has 
access to the layout information. The attacker’s goal in this 
case is to insert HT as stealthy as possible, from the 
functional, the performance, and the layout point of views. 
The selection of the sites is therefore based on the 
assumption that the HT is triggered (i) by signals with low 
controllability, (ii) in paths that are not critical in terms of 
delay, and (iii) combining multiple signals that are close 
from each other in the circuit’s layout,. 

2) Design-for-Harware-Trust 
Inspired by Design-For-Testability solutions, so-called 

Design-For-Hardware-Trust solutions propose to modify the 
design methodology in order to incorporate features in the 
ICs’ that can either help detections methods, or prevent an 
attacker from inserting a HT [13]. 

 In [14] and [15], the state transition graph is modified in 
order to prevent HT insertion and facilitate detection during 
test. The idea is to help controlling the least controllable 
signals in a design, and observing the least observable 
signals. To do that, an input key allows activating a state 
machine into a transparent mode in which the key forces the 
least controllable signals to their rare value, in order to 
simulate the occurrence of a rare event that is likely to detect 
a HT. Besides, to improve the observation of the effect of 
the HT on the outputs, the values at the least observable 
signals are compacted into an observable signature. 

 
Salmani et al. propose also in [16] a method that aims at 

increasing the probability of activating a HT during logic 
testing. The transition probability of a signal (i.e. the result 
of multiplying the probability of being ‘0’ and the 

Payload

...

cut
Payload signal

Trigger signals

Trigger



 3 

probability of being ‘1’ of a signal) is used to estimate the 
number of clock cycles required to generate a. The method 
consists in inserting so-called dummy scan flip-flops to 
remove rare transitions. The goal is then that all signals have 
a transition probability above a given transition probability. 
This way, it makes it harder for an adversary to find which 
signals to use as a trigger. 

Again with the aim of raising transition probabilities, it 
is proposed in [17] to insert a Probability Increase Circuit 
(PIC) in the ICs. This PIC consists in control-points based 
on OR or AND gates, depending on which value is rare. 

C. Fight against overproduction and HTs insertion 
It has been evoked in [6] that, if an IC is encrypted while 

it passes through the untrusted design phages, its 
functionality is not revealed. Encryption therefore prevents 
reverse engineering, cloning, as well as HT insertion. 
However, this HT protection is only a side effect if the 
encryption method does not focus on protecting against HT. 

In [14, 15], the interest of a sequential obfuscation 
scheme to fight HT insertion is presented. It is assumed that 
such an approach is particularly oriented toward thwarting 
HT insertion since it prevents an attacker from exploiting 
the true state transition to insert a HT. Furthermore, it makes 
some inserted HTs benign: those only effective in 
obfuscated mode. 

To the best of our knowledge, the first method 
combining combinational encryption and HT detection was 
proposed in [18]. The principle of this method is a 
combinational encryption that consists in the modification of 
the gate level netlist in order to encrypt the circuit with a 
newly added key, as in [5, 6]. However, the newly added 
gates are in this case inserted with the intention of helping 
thwarting the insertion of potential HTs. To do so, the goal 
is to improve the controllability of the low controllable 
signals, and then to "hide" their low controllable property 
from the attacker point of view. 

III.  RARE VALUE BASED LOGIC ENCRYPTION 
In this paper, an encryption method dedicated to the 

detection of HTs is proposed, in the sense that it prevents an 
attacker from exploiting the “truly” low controllable signals 
of a circuit. In other words, the addition of new gates driven 
by a key aims at virtually changing the probabilities of every 
rare signal to be set to ‘0’ or ‘1’. As opposed to the work in 
[15, 16], in which the modification of the probabilities of the 
signals is effective only in a particular mode (scan test mode 
for detection at test time in [15] and a so-called testing mode 
in [16]), our encryption scheme modifies the probabilities of 
the signals in functional mode too. Based on the principle 
introduced in [18], the presented encryption scheme is more 
efficient in terms of removing low controllable signals, and 
is more secure regarding “decryption” algorithms [19]. 

A. Encryption 
Encryption is done according to controllability values of 

signals. Signals with low controllability are encrypted, i.e. 
signals with a low probability of having value ‘0’ or ‘1’. The 

first parameter of our encryption technique is a chosen 
probability threshold (e.g. 0.1% chance of being ‘0’ or ‘1’). 
The aim of the procedure is then to obtain an encrypted 
circuit in which the number of signals with a probability 
below this threshold is as small as possible. It should be 
noted that the ideal would be to get close to 50% probability 
for all signals but the exact balance of 50% is not needed to 
control a signal to 1 or 0. That is why we seek to re balance 
the probabilities of nodes having the most unbalanced 
probabilities above a certain threshold. A second parameter 
can be given: the maximum number of gates used for the 
encryption. This value is then a trade-off between quality of 
encryption and area overhead. 

Our encryption is achieved by inserting XOR/XNOR as 
well as ANDORI gates in the design as presented in the 
example of Figure 3: 

! First, the probabilities of all signals are computed (cf. 
Fig. 3.a). This is done thanks to the method described in 
[20]. Let us consider signal x with a 1-probability of 
1/64. Let us assume that this probability is beyond the 
threshold. 
! To increase this probability, an OR gate can be added 
(with a bit key equal to ‘0’) to “create” a signal x’ with 
more balanced probabilities (cf. Fig. 3.b-1) (a AND gate 
would be used in case of a rare 0). This new gate has 
also the effect of balancing the probabilities of 
downstream signals (cf. signal y). Nevertheless, signal x 
remains in the netlist. An encryption gate is therefore 
needed that aggregates the newly added gate and the gate 
driving the x signal (gate A in Fig. 3.b-1). In our 
example, a gate with the functionality “A.B+C”( is(
needed. Gate A is therefore changed into this new gate, 
and the low controllable signal x is no longer in the 
netlist (cf. Fig 3.b-2). Note that a XOR/XNOR gate 
could also be used but gates aggregating the 
functionality “A.B xor C” usually do not exist, hence the 
interest of using AND/OR gate that permit the use of 
ANDORI gates. 
! If the use of an ANDORI gate is not possible 
(typically if x is not the output of a AND or a OR gate), 
the idea is to encrypt one of the upstream signals i.e. the 
signals connected to the inputs of gate A. The idea is in 
that case to incorporate a XOR/XNOR gate. Since the 
encrypted signal is an upstream signal, there is indeed no 
need of aggregating the newly added gate. The upstream 
signal with the most unbalanced probabilities (as long as 
it does not belong to a critical path) is chosen since its 
probabilities modification will have the greatest impact 
on downstream signals (cf. Fig. 3.c). 
As one can see the encryption of x signal thanks to a 

ANDORI gate leads to far better results (1-
probability=65/128) than the encryption on an upstream 
signal (1-probability=1/8=16/128). This is why this 
encryption is done in priority, and the encryption of an 
upstream signal, only if the first one was not possible. 

The encryption scheme presented in [18] generates a 1-
probability of 17/128 for signal x. The use of a OR gate 
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instead of a XOR gate leads indeed to lightly better 
improvements. However, the idea of using XOR/XNOR 
gate when only the encryption of an upstream signal is 
possible is preferred because it was presented in [19] that 
XOR/XNOR gates were more resilient than AND/OR gates 
to decryption attacks.  

 

 
a) Probabilities (0-probability, 1-probability) 
 

 
b-1) Change in probabilities 
 

 
b-2) Encryption of the signal 
 

 
c) Encryption of an upstream signal 

Figure 3. Example of encryption (encryption in dotted lines) 
 

An iterative process is used in order to change the 
probabilities of all the rare signals: among rare signals, the 
encryption is made primarily for the signals that are closer 
to the input pins. It is assumed that these are the signals for 
which controllability improvement will have the greatest 
impact on downstream signals: for example in Fig. 3, signal 
y is also a rare signal in the original netlist, but the 
encryption of this signal is not necessary anymore after 
signal x has been encrypted. Signal y would have 
unnecessarily been encrypted with a greedy algorithm as in 
[18].  
Several phases of encryption are done and probabilities are 
computed between each phase of encryption. Furthermore, a 
check is done to remove an encryption gate if it does not 
change the probabilities as much as desired. This way, in 
case of a limitation in the possible number of encryption 
gates, this leaves room for a future encryption gate that 
could lead to better changes. 

B. Encription key 
1) Size of the key 

Depending on the size of the circuit to be encrypted, the 
number of necessary gates to encrypt the circuit may 
become very large. It is then not conceivable that the 
number of key bits represents a 1:1 ratio with respect to the 
number of encryption gates. In that case, so-called 
encryption signals (i.e. encryption gates inputs) have to be 
grouped to fit with the desired number of key bits. 

Nevertheless, merging two signals may change the 
signals probabilities. This can indeed lead to create 
divergences/reconvergences that would modify the 
probabilities of concerned signals. As presented in the 
example in Figure 4, the encryption of two rare-1 signals 
with distinct keys lead to a probability of 73/128 of being 
‘1’ for the output signal, whereas it is only 17/32 (=68/128) 
if the two key bits are merged. 

One way to minimize the effect of this added procedure 
is to merge signals that do not belong to the same logic 
cone. This restriction prevents creating reconvergences. We 
have developed a heuristic that combines encryption signals 
together, after sorting them in descending order according to 
the number of logic cones that they belong to. This way, the 
most problematic signals are processed first. Encryption 
signals are then grouped according to two conditions: 1) 
they correspond to the same key value (note that this 
condition can be easily alleviated with the insertion of 
invertors, but we choose not to use invertors in order not to 
add further logic cells in the design); 2) they have no 
common logic cone. 

This may not be sufficient to reach a desired “small” 
number of key bits. In such a case, signals belonging to the 
fewest logical cones possible in common can be grouped. 
To do so, from the preceding sets, signals belonging to the 
smallest sets are reallocated into other existing sets, 
choosing each time the set for which there is the least logical 
cones in common. This is done until the number or 
remaining sets equals the user-chosen number of key bits. 
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a) Probabilities (0-probability, 1-probability) 

 
b) Encryption with distinct key bits 

 
c) Encryption with merged key bits 

 
Figure 3. Example of key merging (encryption in dotted lines) 

2) Uniqueness of the key 
The presented encryption procedure produces an 

identical key for every IC. However, in order to thwart 
overproduction, the key must be unique to each IC. 
Solutions have already been proposed in [5, 6]. On of them 
consists in the insertion of a Physically Unclonable Function 
(PUF) into each IC, such as presented in Figure 4. In this 
example, the “encryption key” is the same for every IC 
(produced by the encryption algorithm), but the “user key” 
is IC dependent thanks to the PUF that, given a challenge, 
returns a single response per IC. The challenge and the user 
key, unique for each IC, are accessible to the user, and the 
encryption key (the same for every IC) is not accessible to 
the user. 

 

 
Figure 4. Use of PUF in [6] 

IV. EXPERIMENTAL RESULTS 

Firstly, we discuss the quality of our encryption with 
regards to an attack algorithm aiming at discovering the 
secret key [19]. Secondly, we present the experiments made 
in order to evaluate our algorithm in terms of controllability 
improvements. Besides, we compare these results with the 
ones obtained with the encryption algorithm presented in 
[18]. 

A. Protection against overproduction 
In [19], a SAT-based algorithm is presented, that aims a 

determining the key values of an encrypted design. Several 
combinational encryption algorithms are tested including [5, 
6, 18]. From the experiments made, the insertion of 
AND/OR and MUX gates is less secure than the insertion of 
XOR/XNOR gates. That is why we chose to use 
XOR/XNOR gates for the encryption of an upstream signal. 
However, even if the algorithm manages to decrypt most 
encrypted circuits, it is efficient only on combinational 
circuits. 

Twelve encryptions were made: six with our algorithms, 
and 6 with the algorithm of [18]. The algorithm decryption 
managed to decrypt the key and the execution time was in 
the same order of magnitude for both algorithms. This is 
because very few (if any) XOR gates were used by our 
algorithm in the encryption of the benchmarks used. 

B. Protection against HT 
We evaluated our method on ISCAS benchmarks. Table 

I presents, for each benchmark: 
! The parameters chosen: probability threshold (as well 
as the number of rare signals under that assumption) and 
maximum number of masking gates allowed, 
!  The results after encrypting/masking: in terms of 
area (number of gates added) and improvements in 
controllability (number of signals above, or still below 
the threshold). 
For each experiment, the number of masking gates 

allowed was chosen below the number of low controllable 
signals, in order to test the limits of the methods. One can 
conclude from the data that our approach manages to 
remove all rare signals in many more cases than the 
approach in [18], with fewer gates. 

V. CONCLUSION 
The goal of our encryption technique is to thwart not 

only overproduction, but also the insertion of HTs, by 
minimizing the number of rare values in a circuit. That way, 
an attacker cannot exploit these rare values to insert a HT. 
The goal is to make the insertion more difficult, if not 
impossible.  

 
From the logic masking of several benchmarks, results 

show that the proposed algorithm is more efficient than the 
first algorithm that introduced the idea, in terms of 
controllability improvements and area overhead. 
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TABLE I.  LOGIC MASKING RESULTS REGARDING CONTROLLABILITY 

Benchmark Parameters Initial Encryption in [18]! Proposed logic masking!

 Threshold Budget Number 
of rare 
signals 

Number of 
masking 
gates 

Number of 
rare signals 
remaining 

% area 
overcost 

% rare 
signals 
removed 

Number of 
masking 
gates 

Number of 
rare signals 
remaining 

% area 
overcost!

% rare 
signals 
removed 

apex2 0.01 32 21 21 0 +3% -100% 8 0 +1%! -100% 

0.05 64 103 64 9 +10%! -91% 26 0 +4%! -100% 

apex4 0.01 32 58 32 4 +0.6% -93% 29 0 +0.5% -100% 

0.05 512 683 512 77 +10% -89% 229 0 +4% -100% 

c432 0.1 8 7 7 0 +4% -100% 7 0 +4% -100% 

0.2 32 53 32 33 +20% -38% 31 0 +19% -100% 

c499 0.2 32 32 32 0 +16% -100% 32 0 +16% -100% 

0.3 32 58 32 50 +16% -16% 26 0 +13% -100% 

c1355 0.1 32 64 32 32 +6% -50% 32 32 +6% -50% 

0.2 64 112 64 96 +12% -14% 64 0 +12% -100% 

c1908 0.1 16 31 16 14 +2% -55% 16 6 +2% -81% 

0.2 64 110 64 65 +7% -41% 64 9 +7% -92% 

c2670 0.001 16 28 16 8 +1.4% -71% 11 0 +1% -100% 

0.01 16 33 16 8 +1.4% -76% 12 0 +1% -100% 


