
 1

Preventing Hardware Trojan Insertion
through Logic Masking

Sophie Dupuis, Marie-Lise-Flottes, Giorgio Di Natale, Bruno Rouzeyre
LIRMM (Université de Montpellier / CNRS UMR 5506)

Montpellier, France
firstname.lastname@lirmm.fr

Abstract —Due to the evolution in the IC supply chain, IPs
and dies come from numerous, and possibly untrusted, sources.
This loss of control over the entire production flow may thus
lead to several threats including mask theft, overproduction, as
well as the insertion of malicious alterations to the circuits,
referred to as Hardware Trojans (HTs). To protect circuits
from overproduction, the target circuit’s function can be
masked so that only authorized customers can use them. In this
paper, we propose a masking technique for prevention of
overproduction that also helps thwarting HT insertion.

Index Terms — Hardware Trojan; Logic Masking; Design
for Hardware Trust; Logic testing.

I. INTRODUCTION
With ever-shrinking transistor technologies, the cost of

new fabrication facilities is becoming prohibitive and
outsourcing the fabrication process to low-cost locations has
become a major trend in Integrated Circuits (ICs) industry in
the last decade. In addition, the complexity of today
integrated system requires the use of third party Intellectual
Property (IP) cores. This raises the question about untrusted
foundries and IP suppliers and therefore hardware piracy:
mask theft and overproduction [1] as well as the insertion of
malicious circuitry or alterations, referred to as Hardware
Trojans (HTs) [2, 3, 4]. Two challenges arise: protect the
ICs from mask theft and overproduction as well as be able to
verify the trustworthiness of the manufactured ICs.

In order to protect ICs from theft and overproduction, the
functionality of the ICs can be masked so that only
authorized users can properly use them. This procedure,
often referred to as encryption in literature [5, 6, 7], is
achieved by the addition of a key, which the correct value
must be provided for the proper operation of the ICs.

In order to protect ICs from HTs, several methods have
been proposed that aim at detecting their presence. HTs
detection methods are divided into two categories: methods
based on side-channel analysis [8, 9], or logic testing [10,
11, 12]. Side channel analysis methods focus on observing
some physical parameters of the circuit, such as power
consumption [8] or timing [9]. Relying on golden ICs (i.e.
circuit that have been ensured to be HT-free by destructive
methods), a comparison is made with the circuits under test.
The assumption is that the introduction of additional logic
gates should become visible because of an increase of the
power consumption of the circuit or an increase of the delay
in the logic path containing the HT. However, the main
weakness of these methods is to manage environment

variations. The second category relies on testing-based
approaches. These methods focus on so-called rare values
based HTs i.e. HTs that aim at modifying the functionality
of a circuit under very rare conditions as introduced in [10].
The main concern is therefore to be able to activate potential
HTs i.e. find test vectors that can maximize the chances of
activating the HTs [11, 12].

In addition to detection methods, so-called design for
hardware trust methods aim at improving HT detectability
or preventing an attacker from inserting HT thanks to
specific design rules [13]. These methods can e.g. modify
the state machine [14, 15] or the combinational logic [16,
17].

The insight of using logical encryption in order to fight
against HTs has recently been introduced in [18]. In this
paper, we propose such a technique whose general idea is to
minimize so-called rare values in a circuit (i.e. low
controllable signals). Assuming that a HT requires a
triggering condition and that an attacker is likely to attach
this condition on signals with low controllability in order to
make the HT stealthy, the minimization of these rare values
is supposed to make it harder for an attacker to exploit them
to incorporate a HT’s trigger.

The first contribution of this paper is a novel structural
modification using XOR/XNOR gates as well as complex
logic functions (e.g. Z=A.B+C) referred as ANDORI gates.
The second contribution of this paper is an iterative
algorithm that allows resulting in less impact on the original
circuit in terms on extra delays and area for the same
improvement in terms on controllability. Compared to the
method presented in [18], the proposed approach differs in
signal selection and structural modification. As presented in
Section IV, it results in better controllability improvements.

This paper is organized as follows. In Section II, we
recall existing “encryption” methods, HTs detection
methods as well as design-for-Hardware-Trust methods. In
Section III, we present our logic masking technique.
Experimental data are reported in Section IV. Finally,
Section V concludes the paper.

II. PRIOR WORK

A. Fight against overproduction

As introduced in [6], logic encryption means hiding the
hardware functionality (not encrypting the design by a
cryptographic algorithm).

 2

The terms obfuscation and masking are also used in
literature. Whatever the term used, the goal is to protect ICs
from mask theft and overproduction by preventing
unauthorized IC use thanks to extra logic that changes the
circuit functionality when a proper key is not provided. This
way, only authorized users (who know the key) can use the
ICs. We will use for each paper the term used by the authors
concerning the technic. Logic masking will be used for the
proposed approach.

1) Combinational encryption
The combinational encryption technique proposed in [5]

consists in randomly inserting XOR/XNOR gates into the
design. One input of each of these gates is connected to an
original circuit signal while the other one is controlled by a
bit of the key. For proper IC use, the correct key value must
be given so that the newly added gates do not inverse the
value of the signals they are connected to.

However, a random insertion of the encryption gates
cannot ensure that wrong keys corrupt the outputs as
wanted: if a wrong key produces a correct output, or affects
only one or a few bits of the output, this renders the
encryption procedure weak, as explained in [6]. In this
paper, an improvement of the previous approach is
presented that aims at ensuring that any wrong key affects
half of the output bits. The goal is to make it difficult for an
attacker to find the secret key. The encryption procedure
inserts XOR/XNOR, and the places to insert these gates are
therefore chosen in order to achieve 50% Hamming distance
between the correct and the wrong outputs.

2) Sequential encryption
A so-called netlist level obfuscation is presented in [7].

The goal is to combine a combinational encryption and a
sequential encryption i.e. a modification of the state
transition function (FSM). The newly inserted FSM defines
two modes of operations: the normal and the obfuscated
mode. By default, the IC is in obfuscated mode (FSM output
= ‘1’) and the key (a specific input sequence) allows
toggling from the obfuscated mode to the normal one (FSM
output = ‘0’). The combinational encryption is made with
the addition of XOR gates connecting the FSM output and
several signals in the circuit. Original signals are thus
inverted in obfuscated mode thanks to the FSM output. The
choice is made to encrypt signals with large fan-in and fan-
out cones, assuming that modification of such nodes will
affect a larger number of internal nodes and primary
outputs.

B. Fight against HTs insertion

Figure 1. Rare value HT circuit model.

1) Logic testing and HT activation
In order to be able to detect a HT by logic testing, the

main concern is to activate the HT in order to obtain an
erroneous output. As introduced in [10], a HT is described
in terms of its activation mechanism (referred as the
triggering condition or trigger) and the introduced effect
(referred as the payload) (cf. Fig. 1). Based on the
assumption that the HT activation should occur under very
rare conditions in order to minimize/avoid detection at test
time, the goal is to create pattern generation techniques
dedicated to detection of HTs, i.e. aiming at producing a
reduced set of patterns that maximizes the chances of
triggering potential HTs.

In [10], the main assumption is that triggers are supposed
to depend on the least controllable signals, and payloads on
the least observable signals. The goal is then to find the
“most likely signals” on which an attacker could have
attached a HT trigger and stitched a HT payload, and then,
to generate patterns that aim at activating the potential
triggers and propagating the potential payloads.

In [11], Chakraborty et al. propose a methodology called
Multiple Excitation of Rare Occurrence (MERO). The idea
is to improve the previous work by activating each potential
trigger a given number of times.

In [12], the goal is the same, but several criteria are
considered to better reflect the choices that may be made by
an attacker for inserting HTs, assuming that she/he has
access to the layout information. The attacker’s goal in this
case is to insert HT as stealthy as possible, from the
functional, the performance, and the layout point of views.
The selection of the sites is therefore based on the
assumption that the HT is triggered (i) by signals with low
controllability, (ii) in paths that are not critical in terms of
delay, and (iii) combining multiple signals that are close
from each other in the circuit’s layout,.

2) Design-for-Harware-Trust
Inspired by Design-For-Testability solutions, so-called

Design-For-Hardware-Trust solutions propose to modify the
design methodology in order to incorporate features in the
ICs’ that can either help detections methods, or prevent an
attacker from inserting a HT [13].

 In [14] and [15], the state transition graph is modified in
order to prevent HT insertion and facilitate detection during
test. The idea is to help controlling the least controllable
signals in a design, and observing the least observable
signals. To do that, an input key allows activating a state
machine into a transparent mode in which the key forces the
least controllable signals to their rare value, in order to
simulate the occurrence of a rare event that is likely to detect
a HT. Besides, to improve the observation of the effect of
the HT on the outputs, the values at the least observable
signals are compacted into an observable signature.

Salmani et al. propose also in [16] a method that aims at

increasing the probability of activating a HT during logic
testing. The transition probability of a signal (i.e. the result
of multiplying the probability of being ‘0’ and the

Payload

...

cut
Payload signal

Trigger signals

Trigger

 3

probability of being ‘1’ of a signal) is used to estimate the
number of clock cycles required to generate a. The method
consists in inserting so-called dummy scan flip-flops to
remove rare transitions. The goal is then that all signals have
a transition probability above a given transition probability.
This way, it makes it harder for an adversary to find which
signals to use as a trigger.

Again with the aim of raising transition probabilities, it
is proposed in [17] to insert a Probability Increase Circuit
(PIC) in the ICs. This PIC consists in control-points based
on OR or AND gates, depending on which value is rare.

C. Fight against overproduction and HTs insertion
It has been evoked in [6] that, if an IC is encrypted while

it passes through the untrusted design phages, its
functionality is not revealed. Encryption therefore prevents
reverse engineering, cloning, as well as HT insertion.
However, this HT protection is only a side effect if the
encryption method does not focus on protecting against HT.

In [14, 15], the interest of a sequential obfuscation
scheme to fight HT insertion is presented. It is assumed that
such an approach is particularly oriented toward thwarting
HT insertion since it prevents an attacker from exploiting
the true state transition to insert a HT. Furthermore, it makes
some inserted HTs benign: those only effective in
obfuscated mode.

To the best of our knowledge, the first method
combining combinational encryption and HT detection was
proposed in [18]. The principle of this method is a
combinational encryption that consists in the modification of
the gate level netlist in order to encrypt the circuit with a
newly added key, as in [5, 6]. However, the newly added
gates are in this case inserted with the intention of helping
thwarting the insertion of potential HTs. To do so, the goal
is to improve the controllability of the low controllable
signals, and then to "hide" their low controllable property
from the attacker point of view.

III. RARE VALUE BASED LOGIC ENCRYPTION
In this paper, an encryption method dedicated to the

detection of HTs is proposed, in the sense that it prevents an
attacker from exploiting the “truly” low controllable signals
of a circuit. In other words, the addition of new gates driven
by a key aims at virtually changing the probabilities of every
rare signal to be set to ‘0’ or ‘1’. As opposed to the work in
[15, 16], in which the modification of the probabilities of the
signals is effective only in a particular mode (scan test mode
for detection at test time in [15] and a so-called testing mode
in [16]), our encryption scheme modifies the probabilities of
the signals in functional mode too. Based on the principle
introduced in [18], the presented encryption scheme is more
efficient in terms of removing low controllable signals, and
is more secure regarding “decryption” algorithms [19].

A. Encryption
Encryption is done according to controllability values of

signals. Signals with low controllability are encrypted, i.e.
signals with a low probability of having value ‘0’ or ‘1’. The

first parameter of our encryption technique is a chosen
probability threshold (e.g. 0.1% chance of being ‘0’ or ‘1’).
The aim of the procedure is then to obtain an encrypted
circuit in which the number of signals with a probability
below this threshold is as small as possible. It should be
noted that the ideal would be to get close to 50% probability
for all signals but the exact balance of 50% is not needed to
control a signal to 1 or 0. That is why we seek to re balance
the probabilities of nodes having the most unbalanced
probabilities above a certain threshold. A second parameter
can be given: the maximum number of gates used for the
encryption. This value is then a trade-off between quality of
encryption and area overhead.

Our encryption is achieved by inserting XOR/XNOR as
well as ANDORI gates in the design as presented in the
example of Figure 3:

! First, the probabilities of all signals are computed (cf.
Fig. 3.a). This is done thanks to the method described in
[20]. Let us consider signal x with a 1-probability of
1/64. Let us assume that this probability is beyond the
threshold.
! To increase this probability, an OR gate can be added
(with a bit key equal to ‘0’) to “create” a signal x’ with
more balanced probabilities (cf. Fig. 3.b-1) (a AND gate
would be used in case of a rare 0). This new gate has
also the effect of balancing the probabilities of
downstream signals (cf. signal y). Nevertheless, signal x
remains in the netlist. An encryption gate is therefore
needed that aggregates the newly added gate and the gate
driving the x signal (gate A in Fig. 3.b-1). In our
example, a gate with the functionality “A.B+C”(is(
needed. Gate A is therefore changed into this new gate,
and the low controllable signal x is no longer in the
netlist (cf. Fig 3.b-2). Note that a XOR/XNOR gate
could also be used but gates aggregating the
functionality “A.B xor C” usually do not exist, hence the
interest of using AND/OR gate that permit the use of
ANDORI gates.
! If the use of an ANDORI gate is not possible
(typically if x is not the output of a AND or a OR gate),
the idea is to encrypt one of the upstream signals i.e. the
signals connected to the inputs of gate A. The idea is in
that case to incorporate a XOR/XNOR gate. Since the
encrypted signal is an upstream signal, there is indeed no
need of aggregating the newly added gate. The upstream
signal with the most unbalanced probabilities (as long as
it does not belong to a critical path) is chosen since its
probabilities modification will have the greatest impact
on downstream signals (cf. Fig. 3.c).
As one can see the encryption of x signal thanks to a

ANDORI gate leads to far better results (1-
probability=65/128) than the encryption on an upstream
signal (1-probability=1/8=16/128). This is why this
encryption is done in priority, and the encryption of an
upstream signal, only if the first one was not possible.

The encryption scheme presented in [18] generates a 1-
probability of 17/128 for signal x. The use of a OR gate

 4

instead of a XOR gate leads indeed to lightly better
improvements. However, the idea of using XOR/XNOR
gate when only the encryption of an upstream signal is
possible is preferred because it was presented in [19] that
XOR/XNOR gates were more resilient than AND/OR gates
to decryption attacks.

a) Probabilities (0-probability, 1-probability)

b-1) Change in probabilities

b-2) Encryption of the signal

c) Encryption of an upstream signal

Figure 3. Example of encryption (encryption in dotted lines)

An iterative process is used in order to change the
probabilities of all the rare signals: among rare signals, the
encryption is made primarily for the signals that are closer
to the input pins. It is assumed that these are the signals for
which controllability improvement will have the greatest
impact on downstream signals: for example in Fig. 3, signal
y is also a rare signal in the original netlist, but the
encryption of this signal is not necessary anymore after
signal x has been encrypted. Signal y would have
unnecessarily been encrypted with a greedy algorithm as in
[18].
Several phases of encryption are done and probabilities are
computed between each phase of encryption. Furthermore, a
check is done to remove an encryption gate if it does not
change the probabilities as much as desired. This way, in
case of a limitation in the possible number of encryption
gates, this leaves room for a future encryption gate that
could lead to better changes.

B. Encription key
1) Size of the key

Depending on the size of the circuit to be encrypted, the
number of necessary gates to encrypt the circuit may
become very large. It is then not conceivable that the
number of key bits represents a 1:1 ratio with respect to the
number of encryption gates. In that case, so-called
encryption signals (i.e. encryption gates inputs) have to be
grouped to fit with the desired number of key bits.

Nevertheless, merging two signals may change the
signals probabilities. This can indeed lead to create
divergences/reconvergences that would modify the
probabilities of concerned signals. As presented in the
example in Figure 4, the encryption of two rare-1 signals
with distinct keys lead to a probability of 73/128 of being
‘1’ for the output signal, whereas it is only 17/32 (=68/128)
if the two key bits are merged.

One way to minimize the effect of this added procedure
is to merge signals that do not belong to the same logic
cone. This restriction prevents creating reconvergences. We
have developed a heuristic that combines encryption signals
together, after sorting them in descending order according to
the number of logic cones that they belong to. This way, the
most problematic signals are processed first. Encryption
signals are then grouped according to two conditions: 1)
they correspond to the same key value (note that this
condition can be easily alleviated with the insertion of
invertors, but we choose not to use invertors in order not to
add further logic cells in the design); 2) they have no
common logic cone.

This may not be sufficient to reach a desired “small”
number of key bits. In such a case, signals belonging to the
fewest logical cones possible in common can be grouped.
To do so, from the preceding sets, signals belonging to the
smallest sets are reallocated into other existing sets,
choosing each time the set for which there is the least logical
cones in common. This is done until the number or
remaining sets equals the user-chosen number of key bits.

3/4, 1/4

1/2, 1/2
1/2, 1/2

1/2, 1/2
1/2, 1/2

1/2, 1/2
1/2, 1/2
1/2, 1/2

3/4, 1/4

3/4, 1/4

A
x

y
127/128, 1/128

63/64, 1/64

15/16, 1/16

15/16, 1/16

A x’x

63/128, 65/128

191/256, 65/256

1/2, 1/2

3/4, 1/4

3/4, 1/4

y

3/4, 1/4

Key input1/2, 1/2

1/2, 1/2
1/2, 1/2

1/2, 1/2
1/2, 1/2

1/2, 1/2
1/2, 1/2

191/256, 65/256
1/2, 1/2
1/2, 1/2

3/4, 1/4

15/16, 1/16

x’
63/128, 65/128

y

3/4, 1/4

3/4, 1/4

Key input

1/2, 1/2

1/2, 1/2

1/2, 1/2

1/2, 1/2
1/2, 1/2

1/2, 1/2

7/8, 1/8

1/2, 1/2
1/2, 1/2

Key input1/2, 1/2

A
x’

15/16, 1/16
y

1/2, 1/2

3/4, 1/4

3/4, 1/4

3/4, 1/4

15/16, 1/16

1/2, 1/2
1/2, 1/2

1/2, 1/2
1/2, 1/2

1/2, 1/2

 5

a) Probabilities (0-probability, 1-probability)

b) Encryption with distinct key bits

c) Encryption with merged key bits

Figure 3. Example of key merging (encryption in dotted lines)

2) Uniqueness of the key
The presented encryption procedure produces an

identical key for every IC. However, in order to thwart
overproduction, the key must be unique to each IC.
Solutions have already been proposed in [5, 6]. On of them
consists in the insertion of a Physically Unclonable Function
(PUF) into each IC, such as presented in Figure 4. In this
example, the “encryption key” is the same for every IC
(produced by the encryption algorithm), but the “user key”
is IC dependent thanks to the PUF that, given a challenge,
returns a single response per IC. The challenge and the user
key, unique for each IC, are accessible to the user, and the
encryption key (the same for every IC) is not accessible to
the user.

Figure 4. Use of PUF in [6]

IV. EXPERIMENTAL RESULTS

Firstly, we discuss the quality of our encryption with
regards to an attack algorithm aiming at discovering the
secret key [19]. Secondly, we present the experiments made
in order to evaluate our algorithm in terms of controllability
improvements. Besides, we compare these results with the
ones obtained with the encryption algorithm presented in
[18].

A. Protection against overproduction
In [19], a SAT-based algorithm is presented, that aims a

determining the key values of an encrypted design. Several
combinational encryption algorithms are tested including [5,
6, 18]. From the experiments made, the insertion of
AND/OR and MUX gates is less secure than the insertion of
XOR/XNOR gates. That is why we chose to use
XOR/XNOR gates for the encryption of an upstream signal.
However, even if the algorithm manages to decrypt most
encrypted circuits, it is efficient only on combinational
circuits.

Twelve encryptions were made: six with our algorithms,
and 6 with the algorithm of [18]. The algorithm decryption
managed to decrypt the key and the execution time was in
the same order of magnitude for both algorithms. This is
because very few (if any) XOR gates were used by our
algorithm in the encryption of the benchmarks used.

B. Protection against HT
We evaluated our method on ISCAS benchmarks. Table

I presents, for each benchmark:
! The parameters chosen: probability threshold (as well
as the number of rare signals under that assumption) and
maximum number of masking gates allowed,
! The results after encrypting/masking: in terms of
area (number of gates added) and improvements in
controllability (number of signals above, or still below
the threshold).
For each experiment, the number of masking gates

allowed was chosen below the number of low controllable
signals, in order to test the limits of the methods. One can
conclude from the data that our approach manages to
remove all rare signals in many more cases than the
approach in [18], with fewer gates.

V. CONCLUSION
The goal of our encryption technique is to thwart not

only overproduction, but also the insertion of HTs, by
minimizing the number of rare values in a circuit. That way,
an attacker cannot exploit these rare values to insert a HT.
The goal is to make the insertion more difficult, if not
impossible.

From the logic masking of several benchmarks, results

show that the proposed algorithm is more efficient than the
first algorithm that introduced the idea, in terms of
controllability improvements and area overhead.

15/16, 1/16

1/2, 1/2

1/2, 1/2

1/2, 1/2

1/2, 1/2
1/2, 1/2 3/4, 1/4

31/32, 1/32

7/8, 1/8

23/32, 9/32

1/2, 1/2

1/2, 1/2

1/2, 1/2

1/2, 1/2
1/2, 1/2 3/4, 1/4

7/16, 9/16

55/128, 73/128

A.B+C

A.B+C

1/2, 1/2
1/2, 1/2 key 2

key 1

23/32, 9/32

1/2, 1/2

1/2, 1/2

1/2, 1/2

1/2, 1/2
1/2, 1/2 3/4, 1/4

7/16, 9/16

15/32, 17/32

A.B+C

A.B+C

1/2, 1/2 key 1

reponse

encryption key
PUF

Accessible
to user

Non accessible
to user

challenge
user key

encryption

 6

REFERENCES
[1] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor and Y.

Makris. Counterfeit Integrated Circuits: A Rising Threat in the Global
Semicondictor Supply Chain. In Proceedings of the IEEE, Special
Issue on Trustworthy Hardware, 102(8):1207–1228, 2014.

[2] X. Wang, M. Tehranipoor and J. Plusquellic. Detecting Malicious
Inclusions in Secure Hardware: Challenges and Solutions. IEEE
International Workshop on Hardware-Oriented Security and Trust
(HOST’08), pages 15–19, 2008.

[3] M. Tehranipoor and F. Koushanfar. A Survey of Hardware Trojan
Taxonomy and Detection. IEEE Design & Test of Computer, 27:10–
25, 2010.

[4] S. Bhunia, M. S. Hsiao, M. Banga, S. Narasimhan. Hardware Trojan
Attacks: Threat Analysis and Countermeasures. In Proceedings of the
IEEE, Special Issue on Trustworthy Hardware, 102(8):1229–1247,
2014.

[5] J. A. Roy, F. Koushanfar and I. L. Markov. EPIC: Ending Piracy of
Integrated Circuits. In Design, Automation and Test in Europe
(DATE’08), pages 1069–1074, 2008.

[6] J. Rajendran, Y. Pino, O. Sinanoglu and R. Karri. Logic Encryption:
A fault Analysis Perspective. In Design, Automation and Test in
Europe (DATE’12), pages 953–958, 2012.

[7] R. S. Chakraborty and S. Bhunia. Hardware Protection and
Authentication Through Netlist Level Obfuscation. In IEEE/ACM
International Conference on Cmputer-Aided Design (ICCAD’08),
pages 674–677, 2008.

[8] D.Agrawal, S.Baktir, D.Karakoyunlu, P.Rohatgi, and B.Sunar. Trojan
Detection using IC Fingerprinting. In IEEE Symposium on Security
and Privacy (SP’07), pages 296–310, 2007.

[9] Y. Jin and Y. Makris. Hardware Trojan Detection Using Path Delay
Fingerprint. In IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST’08), pages 51–57, 2008.

[10] F. Wolf, C. Papachristou, S. Bhunia and R. S. Chakraborty. Towards
Trojan-Free Trusted ICs: Problem Analysis and Detection Scheme. In
Design, Automation and Test in Europe (DATE’08), pages 1362–
1365, 2008.

[11] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia.
MERO: A Statistical Approach for Hardware Trojan Detection. In

International Conference on Cryptographic Hardware and Embedded
Systems (CHES’09), pages 396–410, 2009.

[12] S. Dupuis, P.-S. Ba, M.-L. Flottes, G. Di Natale and B. Rouzeyre.
New Testing Procedure for Finding Insertion Sites of Stealthy
Hardware Trojans. In Design Automation & Test in Europe
(DATE’15), pages 776–781, 2015.

[13] J. Rajendran, O. Sinanoglu, R. Karri. Regaining Trust in VLSI
Design: Design-for-Trust Techniques. In Proceedings of the IEEE,
Special Issue on Trustworthy Hardware, 102(8):1266–1282, 2014.

[14] R. S. Chakraborty, S. Paul, S. Bhunia. On-Demand Transparency for
Improving Hardware Trojan Detectability. In IEEE International
Workshop on Hardware-Oriented Secutity and Trust (HOST’08), pp.
48–50, 2008.

[15] R. S. Chakraborty and S. Bhunia. Security Against Hardware Trojan
Attacks Using Key-Based Design Obfuscation. In Journal of
Electronic Testing, 27(6):767–785, 2011.

[16] H. Salmani, M. Tehranipoor, and J. Plusquellic. A Novel Technique
for Improving Hardware Trojan Detection and Reducing Trojan
Activation Time. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 20(1):112–125, 2012.

[17] H. Xue, T. Moody, S. Li, X. Zhang and S. Ren. Low Overhead
Design for improving Hardware Trojan Detection Efficiency. In
Aerospace and Electronics Conference (NAECON’14), pages 379–
383, 2014.

[18] S. Dupuis, P.-S. Ba, G. Di Natale, , M.-L. Flottes, and B. Rouzeyre. A
Novel Hardware Logic Encryption Technique for thwarting Illegal
Overproduction and Hardware Trojans. IEEE International On-Line
Testing Symposium (IOLTS’14), 2014.

[19] P. Subramanyan, S. Ray and S. Malik. Evaluating the Security of
Logic Encryption Algorithms. In IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST’15), pages 137–143,
2015.

[20] G. Di Natale, S. Dupuis M.-L. Flottes, and B. Rouzeyre.
Identification of Hardware Trojans triggering signals. In Workshop on
Trustworthy Manufacturing and Utilization of Secure Devices
(TRUDEVICE’13), 2013.

TABLE I. LOGIC MASKING RESULTS REGARDING CONTROLLABILITY

Benchmark Parameters Initial Encryption in [18]! Proposed logic masking!

 Threshold Budget Number
of rare
signals

Number of
masking
gates

Number of
rare signals
remaining

% area
overcost

% rare
signals
removed

Number of
masking
gates

Number of
rare signals
remaining

% area
overcost!

% rare
signals
removed

apex2 0.01 32 21 21 0 +3% -100% 8 0 +1%! -100%

0.05 64 103 64 9 +10%! -91% 26 0 +4%! -100%

apex4 0.01 32 58 32 4 +0.6% -93% 29 0 +0.5% -100%

0.05 512 683 512 77 +10% -89% 229 0 +4% -100%

c432 0.1 8 7 7 0 +4% -100% 7 0 +4% -100%

0.2 32 53 32 33 +20% -38% 31 0 +19% -100%

c499 0.2 32 32 32 0 +16% -100% 32 0 +16% -100%

0.3 32 58 32 50 +16% -16% 26 0 +13% -100%

c1355 0.1 32 64 32 32 +6% -50% 32 32 +6% -50%

0.2 64 112 64 96 +12% -14% 64 0 +12% -100%

c1908 0.1 16 31 16 14 +2% -55% 16 6 +2% -81%

0.2 64 110 64 65 +7% -41% 64 9 +7% -92%

c2670 0.001 16 28 16 8 +1.4% -71% 11 0 +1% -100%

0.01 16 33 16 8 +1.4% -76% 12 0 +1% -100%

