

181

An Embedded Digital Sensor Against EM and BB Fault Injection

> David El-Baze, Jean-Baptiste Rigaud, Philippe Maurine

- Context
- Fault Model
- Detector Design
- EM and BB Detection Results
- Optimisation
- Next Steps
- Conclusion

[1] A. Dehbaoui et al. Injection of transient faults using electromagnetic pulses - Practical results on a cryptographic system, IACR 2012

- [2] K. Tobich et al. Yet Another Fault Injection Technique: by Forward Body Biasing Injection
- [3] S. P. Skorobogatov et R. J. Anderson Optical fault induction attacks, CHES 2002
- [4] L. Zussa et al. "Efficiency of a glitch detector against electromagnetic fault injection," in Proceedings of DATE 2014
- [5] Possamai Bastos et al. A bulk built-in sensor for detection of fault attacks. In HOST 2013

- Context
- Fault Model
- Detector Design
- EM and BB Detection Results
- Optimisation
- Next Steps
- Conclusion

• D-type Flip Flops are one of the most sensitive gates against ElectroMagnetic Attacks [6]

Windows where D-type Flip Flop are the most sensitive.

[6] S. Ordas, CARDIS 2014, PHISIC 2015, FDTC 2015

CryptArchi 2016 - La Grande Motte

• D-type Flip Flops are one of the most sensitive gates against ElectroMagnetic Attacks [6]

Windows where DFF of the detector are the most sensitive.Windows where DFF of the protected circuit are the most sensitive.

[6] S. Ordas, CARDIS 2014, PHISIC 2015, FDTC 2015

CryptArchi 2016 – La Grande Motte

- Context
- Fault Model
- Detector Design
- EM and BB Detection Results
- Optimisation
- Next Steps
- Conclusion

- 4 self looped DFFs
- Specific initialisation values
- A set and a reset network

Cover all the transitions and phase opposition

EM & BB Test Bench

Test Bench

FPGA (Xilinx)	Tech. Node	Frequency (Period)	# of detectors
Virtex 5	65 nm	100 MHz (10ns)	36
Virtex II Pro	90 nm	100 MHz (10ns)	34
Spartan 3E 1600	90 nm	50 MHz (20ns)	36

- 34 detectors regulary spreading
- AES as a circuit to protect
- UART as communication system

- Context
- Fault Model
- Detector Design
- EM and BB Detection Results
- Optimisation
- Next Steps
- Conclusion

EM Results

Probability to inject a fault in AES or in detectors Spartan3 1600E / 50 Mhz

CryptArchi 2016 - La Grande Motte

- **GP** (Good Position) : # of positions where the detectors are efficient : the detection could block the output of the cipher (faulted or not).
- **BP** (Bad Position) : # of positions where the AES can be faulted without triggering alarm.
- SR (Success Rate) : Ratio of Good Positions over the total # of active positions = where something happens.

$$SR = \frac{GP}{GP + BP}$$

- Wide Detection Area, no sensor detection range.

SR = 94%

CryptArchi 2016 – La Grande Motte

Successful attacks not detected : 47/467 = 10%

NSPIRING

- Wide Detection Area, NO undetected faults.

SR = 100%

CryptArchi 2016 – La Grande Motte

Table summarizing the success rates by attack and model of FPGA:

	Injection at rising edge			Injection at falling edge		
	Spartan3 1600E	Virtex 5	Virtex II Pro	Spartan3 1600E	Virtex 5	Virtex II Pro
EM Front-side	78 %			88 %		
EM Back-side		94 %	86 %		95 %	94 %
RBBI		100 %	100 %		100 %	100 %

- Context
- Fault Model
- Detector Design
- EM and BB Detection Results
- Optimisation
- Next Steps
- Conclusion

Virtex 5 Floorplan. Colors means number of triggering per sensor for a full map.

of injections detected by detector

Selecting the most active detector

of injections detected by detector

 Generation of the histogram of activity by ignoring the attacks detected by the previous sensors "fixed"

of injections detected by detector

• Iterate again until all the detections are catched.

• Results of optimisation against EM Injections:

- 11 detectors / 36 are enough to detect a the attacks

- Tests against Power Glitches Injections (finalizing the experiments)
- Tests against Laser Injections
- Development of a Test Chip (ASIC).

Conclusion

- Proposal of an enhanced detector
 - Fully Digital and fully compliant with ASIC design flow
 - Small : 35 nand eq. / detector
- Efficient against at least two injection fault methods:
 - ElectroMagnetic Injections
 - Body-Biasing Injections
 - Power Glitch Injections (First results being analyzed)

Thank you !