

Reversing the Field to attack the SoCs

- Double use of EM-fields to defeat the complexity -

Fabien Majéric – Eric Bourbao – Lilian Bossuet

CryptArchi 2016 La Grande Motte - 23/06/2016 Reversing the Field to attack the SoCs

×Introduction

× Methodology

× Experimentation

×Analysis of the results

REVERSING THE FIELD TO ATTACK THE SOCS

- Context
- SoC specificities

Introduction

Internet of Things : more and more complex devices are connected.

➤ Need to perform security tasks
 → done by embedded microprocessor : System on Chip (SoC)

Increase of sensitive data processed by these SoC

- Relative to ID of the users (credentials).
- Relative to safety of the users (automotive)

Security point of view: How to characterize the resistance of this devices against the attacks ? (here: physicals attacks)

X Context

- SoC are soldered
- Package
- Size

- EM is the most suitable physical quantity to spy and disturb a SoC without damage it.
- For the characterization against the attacks, what could be the advantage to use the same physical quantity to spy and disturb a process ?

REVERSING THE FIELD TO ATTACK THE SOCS

- The targeted device

- Principle of our methodology.

Target and methodology

The targeted device:

× SoC : CMOS 40nm, Cortex-A9 (1GHz) , 32-bits, DDR3 memory, Cache L1 & L2...

 \times An hardware crypto-coprocessor embedded in a SoC.

× Crypto-coprocessor : dedicated clock tree, DMA, interrupts, crypto-accelerators,....

× In particular : an AES 128-bits hardware accelerator. 🖕 The module targeted !

Target and methodology

Principle of our methodology:

- 1. EM side-Channel Analysis to localize in space and <u>time</u> the targeted device (AES module)
 - > EM side-channel mapping on the SoC by stimuling the AES with suitable data
 - Emissions analysis
 - Timing localization of the round 9 of the AES (DFA)
- 2. **EM Injection** to check if an exploitable fault is possible.
 - Inject a pulse during the round 9 of the AES (DFA)
 - Injection mapping to cover the entire SoC surface
- 3. Results analysis and mappings comparison

REVERSING THE FIELD TO ATTACK THE SOCS
Experimentation
→ EM side-channel analysis

- EM fault injection

- Results analysis and mappings comparison

Control PC

- drivers
- Softs, GUI...

Digital Oscilloscope

- Bandwidth : 4GHz
- Sampling: 40GS/s
- 4 input channels.

EM µ-probes

- size
- orientation
- Bandwidth

XYZ Table

O HUBERT LUKIEN

you wat

•3 Stepper motors

Side-channel mapping:

 \times The Goal is to detect the EM emissions of the hardware AES:

- > Scan on surface of the SoC \rightarrow variables (x,y)
- For each point (xi,yi), measure of the AES encryption with chosen key and message → variable (t)

- ➤ Nb of spatial points: 21 x 21 Step: 300µm
- × Chosen set of key and message to maximize the HW amplitude during operations.

× Set 1 (Key amplitude) :		HW(key) = 0		HW(plaintext) = 0		
		HW(key) = 128		/(pla	aintext) = 0	
× Set 2 (plaintext amplitude		HW(plaintext) = C) HW(key) = 0		0
		HW(plaintext) = 1		28 HW(key) = 0		0
× Set 3 (cipher amplitude):		HW(cipher) = 0		HW(key) = 0]
		HW(cipher) = 128		HW(key) = 0		

➤ 100 encryptions per parameters per point (xi,yi) → 220500 traces in total

LABORATOIRE HUBERT CURIEN

gemalto

 \times Analysis and extraction of the desired information

$$\sum_{X = \{K, M, C\}} SPoI_{S_X}(x, y)$$

× Timing location of the round 9 of the AES

AES(x,y) information

REVERSING THE FIELD TO ATTACK THE SOCS Experimentation

- EM side-channel analysis

→ EM fault injection

- Results analysis and mappings comparison

Fault injection

Fault injection mapping:

× The Goal is to detect any disturbance of the AES process:

- Scan on the surface of the SoC by injecting EM pulses
- > On each point (x_i,y_i), AES encryption with the same fixed key and message
- Injection of a pulse during the time defined in the side-channel step

Fault injection

➤ Nb of spatial points: 101 x 101 Step: 60µm

 \times Fixed key and message to detect faults during operations:

Кеу	3BE322662F3BE841502E794146052549
Plaintext	000000000000000000000000000000000000000
Cipher	524FF49CC3C5AE60B8A98156B1469E13

 \times EM injection features:

> Time delay after GPIO trigger : $2,988\mu s$

Pulse features Intensity: +400V Duration : 6ns

> 50 encryption by point $(x_i, y_i) \rightarrow 510050$ EM pulses in total

Fault injection

\times Two main type of behaviors:

Faults on the cipher

<no-response>

REVERSING THE FIELD TO ATTACK THE SOCS Experimentation

- EM side-channel analysis
- EM fault injection

→ Results analysis and mappings comparison

Results analysis

 \times 3 main type of faults on the cipher:

\times Faults classification:

Results analysis

 \times No perfect matching between the two maps.

- X Potential candidates for the DFA are the ones which are the closest to the side-channel highlighted areas.
- X The links between emissions and injections EM need more investigations to define precisely areas of interest.

24 Reversing the Field to attack the SoCs

23.06.16

REVERSING THE FIELD TO ATTACK THE SOCS

Conclusion

- We try to exploit the same physical quantity (EM) to spy and disturb a process
- \times The side-channel attack gives information about:
 - The spatial emissions of the AES process
 - The time when to inject a fault
- \times The fault injection attack gives information about :
 - > 3 types of faults
 - Only one kind of them is exploitable for the DFA. This category is the closest to the side-channel highlighted area
- ➤ Partial superposition of the exploitable faults and side-channel emissions → more investigations
 - Layout access would be valuable for results interpretation
 Additional experimentations on other devices will be done

This presentation is available here.

https://dossier.univ-st-etienne.fr/maf13892/public/Presentations/CryptArchi 2016.pdf fabien.majeric@gemalto.com

gemalto