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Post-quantum cryptography

? Code-based cryptography

? Lattice-based cryptography

? Hash-based cryptography

? Multivariate-based cryptography

? Isogeny-based cryptography

No solving in polynomial time,
contrary to number theory problems [Sho97]1

1P. W. Shor, Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer, SIAM Journal on
Computing, 26(5), pp. 1484-1509, 1997.
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Linear code

Definition (Linear code)

Let q = pm be a power m > 0 of some prime p. Let Fq denoted
the finite field of q elements. A linear code C of length n and
dimension k is a k-dimensional subspace of Fn

q.

Definition (Generator matrix)

Let C be a [n, k]q-linear code. Let G ∈ Fk×n
q . We call G a

generator matrix of C iff G-rows are basis vectors of C .
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Linear code

Definition (Parity-check matrix)

Let C be a [n, k]q-linear code. Let H ∈ F(n−k)×n
q . We call H a

parity-check matrix of C if:

∀C ∈ Fn
q, C ∈ C ⇔ C · HT = 0 (∈ Fn−k

q )

Definition (Error-correction capacity)

Let C be a [n, k, d ]-linear code and C a codeword. We call t the
maximum weight of a corrigible error vector added to C :

C̃ = C + E

{
C̃ corrigible if wH(E ) 6 t

C̃ incorrigible if wH(E ) > t
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Syndrome Decoding (SD) problem [BMcEvT78] 2

Inputs

H matrix of size r × n,
S binary vector of length r ,
t interger.

Problem
Does there exist a binary vector e of
length n and weight t such that :

r = n − k
S is called
syndrome.

Theorem
SD is NP-complete.

2E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg, On the
inherent intractability of certain coding problems, IEEE Transactions
on Information Theory, 1978.
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Public-Key Cryptosystem (PKC)
[DH76]3

3W. Diffie and M. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory 1976.
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McEliece PKC

Proposed in [McE78] 4.
Key generation: Given a (binary)
t-error correcting [n, k , d ]-linear code
and a generator matrix G.
Encryption:

1. Message encoding into a codeword

2. Error vector adding to the
codeword

Decryption:

1. Ciphertext permutation

2. Syndrome computation

3. Solving the key equation

4. Error position finding

sk: (Q,G,P)

pk: (G′, n, t)

G′ = Q·G ·P

4R. J. McEliece, A public-key cryptosystem based on algebraic coding
theory, California Inst. Technol., Pasadena, CA, Tech. Rep. 44, 1978.
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Cryptography
Theory vs. Practice

Mathematics

VS.

Implementations
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Side-Channel Attack (SCA)

Definition (SCA)

Exploit the laws of physics phenomenons to obtain some
information contained in channels associated to an implementation
(software or hardware).

1st SCA in [Koc96]5

5P. C. Kocher, Timing attacks on implementations of Diffie- Hellman,
RSA, DSS, and other systems, CRYPTO’96, Springer, LNCS, vol. 1109,
pp. 104-113, 1996. 11 / 43
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How to implement the McEliece PKC?

Key generation: Given a (binary)
t-error correcting [n, k , d ]-linear code
and a generator matrix G.
Encryption:

1. Message encoding into a codeword

2. Error vector adding to the
codeword

Decryption:

1. Ciphertext permutation

2. Syndrome computation

3. Solving the key equation

4. Error position finding

sk: (Q,G,P)

pk: (G′, n, t)

G′ = Q·G ·P
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Four profiles of implementation [HMP10] 6

for ciphertext permutation and syndrome computation

Profile I Profile II

C̃p = C̃ · P−1 C̃p = C̃ · P−1

Polynomial operations S = C̃p · HT

for Goppa codes Γ(L ,G ) with L and G

Profile III Profile IV
Lp ≈ L · P HT

p = P−1 · HT

Polynomial operations S = C̃ · HT
p

for Goppa codes Γ(L ,G ) with Lp and G

6S. Heyse, A. Moradi and C. Paar, Practical Power Analysis Attacks
on Software Implementations of McEliece, PQCrypto 2010.
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Attack platform scheme

ARM Cortex-M3 microprocessor
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Simple Power Analysis (SPA)
on the syndrome computation

Vector-matrix product

McEliece Decryption:

1. Ciphertext permutation

2. Syndrome computation : S = C̃p · H
3. Solving the key equation

4. Error position finding
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Four profiles of implementation [HMP10]
for ciphertext permutation and syndrome computation

Profile I Profile II

C̃p = C̃ · P−1 C̃p = C̃ · P−1

Polynomial operations S = C̃p · HT

for Goppa codes Γ(L ,G ) with L and G

Profile III Profile IV
Lp ≈ L · P HT

p = P−1 · HT

Polynomial operations S = C̃ · HT
p

for Goppa codes Γ(L ,G ) with Lp and G
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Syndrome computation
Scheme
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Syndrome computation
Algorithm

Inputs: Permuted ciphertext C̃p ∈ Fn
2, parity-check matrix

H ∈ Fr×n
2 .
For i = 1 to n

If C̃pi = 1
S = S ⊕Hi

EndIf
EndFor
Return S .

Output: Syndrome S ∈ Fr
2 of C̃p.
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SPA on the syndrome computation [PRDCF15]7

Toy example

SPA with chosen single-one ciphertexts

P-1 HT S P A

1st measurement:

2nd measurement:

3rd measurement:

4th measurement:

Known to attacker Secret data

Input codewords (CCA) Permutation matrix Parity-check matrix

Leakage Reconstruction of the P matrix

Attack Reconstructed bit
permuted codewords

Reconstructed P matrix
by comparing with inputs

Power consumption
traces

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

P*

Bit permuted codewords

Chosen Ciphertext Attack (CCA)

7M. Petrvalsk, T. Richmond, M. Drutarovsk, P.-L. Cayrel
and V. Fischer, Countermeasure against the SPA attack on an
embedded McEliece cryptosystem, IEEE, International Conference
Radioelektronika 2015, pp. 462-466, 2015.
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Trace example [PRDCF15]
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Countermeasure [PRDCF15]
First algorithm

Inputs: Permuted ciphertext C̃p ∈ Fn
2, parity-check matrix H ∈ Fr×n

2 .
words = r/sizeof (S) Required number of bytes to store S
For i = 1 to n

tmp = unsigned(0− C̃pi )
For j = 1 to words

Sj = Sj ⊕Hi,j& tmp
EndFor

EndFor
Return S .

Output: Syndrome S ∈ Fr
2 of C̃p.
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Countermeasure [PRDCF15]
Trace example
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Countermeasure [PRDCF15]
Second algorithm

Inputs: Permuted ciphertext C̃p ∈ Fn
2, parity-check matrix H ∈ Fr×n

2 .
words = r/sizeof (S) Required number of bytes to store S

Syndrome masking
For j = 1 to words

Sj = Sj & 0xAAAA
EndFor

Syndrome computation
For i = 1 to n

tmp = unsigned(0− C̃pi )
For j = 1 to words

Sj = Sj ⊕Hi,j& tmp
EndFor

EndFor
Syndrome unmasking

For j = 1 to words
Sj = Sj & 0xAAAA

EndFor
Return S .

Output: Syndrome S ∈ Fr
2 of C̃p.
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Syndrome computation with countermeasure [PRDCF15]
Scheme
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Differential Power Analysis (DPA)
on the ciphertext permutation

For example vector-matrix product

Decryption:

1. Ciphertext permutation : C̃p = C̃ · P−1

2. Syndrome computation

3. Solving the key equation

4. Error position finding
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Four profiles of implementation [HMP10]
for ciphertext permutation and syndrome computation

Profile I Profile II

C̃p = C̃ · P−1 C̃p = C̃ · P−1

Polynomial operations S = C̃p · HT

for Goppa codes Γ(L ,G ) with L and G

Profile III Profile IV
Lp ≈ L · P HT

p = P−1 · HT

Polynomial operations S = C̃ · HT
p

for Goppa codes Γ(L ,G ) with Lp and G
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Straightforward permutation
Example

C̃

1 2 . . . j . . . n

1 2 . . . i . . . n
C̃p

P
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Straightforward permutation
Algorithm

Inputs: Private permutation matrix P−1 ∈ Fn×n
2 represented by a

lookup table tP
−1

, ciphertext C̃ ∈ Fn
2.

For i = 0 to n − 1
j = tP

−1

i

C̃pi = C̃j

Endfor
Return C̃p.

Output: Permuted ciphertext C̃p ∈ Fn
2.
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’Secure’ permutation [STMOS08]8

Algorithm

Inputs: Private permutation matrix P−1 ∈ Fn×n
2 represented by a

lookup table tP
−1

, ciphertext C̃ ∈ Fn
2.

1. For i = 0 to n − 1

2. j = tP
−1

i

3. C̃pi = 0

4. For h = 0 to n − 1

5. k = C̃pi

6. µ = C̃h

7. s = j ⊕ h

8. s |= s � 1

9. s |= s � 2

10. s |= s � 4

11. s |= s � 8

12. s |= s � 16

13. s & = 1

14. s = ∼ (s − 1)

15. C̃pi = (s & k) | ((∼ s) & µ)

16. Endfor

17. Endfor

18. Return C̃p

Output: Permuted ciphertext C̃p ∈ Fn
2.

8F. Strenzke, E. Tews, H. G. Molter, R. Overbeck and A. Shoufan,
Side Channels in the McEliece PKC, PQCrypto 2008.
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’Secure’ permutation [STMOS08]
Examples

Steps Test hypotheses
7: s = j ⊕ h 1 00 . . . 0︸ ︷︷ ︸

31

00 . . . 0︸ ︷︷ ︸
31

1 11 . . . 1︸ ︷︷ ︸
32

00 . . . 0︸ ︷︷ ︸
32

8: s |= s � 1 11 00 . . . 0︸ ︷︷ ︸
30

00 . . . 0︸ ︷︷ ︸
31

1 11 . . . 1︸ ︷︷ ︸
32

00 . . . 0︸ ︷︷ ︸
32

9: s |= s � 2 1111 00 . . . 0︸ ︷︷ ︸
28

00 . . . 0︸ ︷︷ ︸
31

1 11 . . . 1︸ ︷︷ ︸
32

00 . . . 0︸ ︷︷ ︸
32

10: s |= s � 4 11 . . . 1︸ ︷︷ ︸
8

00 . . . 0︸ ︷︷ ︸
24

00 . . . 0︸ ︷︷ ︸
31

1 11 . . . 1︸ ︷︷ ︸
32

00 . . . 0︸ ︷︷ ︸
32

11: s |= s � 8 11 . . . 1︸ ︷︷ ︸
16

00 . . . 0︸ ︷︷ ︸
16

00 . . . 0︸ ︷︷ ︸
31

1 11 . . . 1︸ ︷︷ ︸
32

00 . . . 0︸ ︷︷ ︸
32

12: s |= s � 16 11 . . . 1︸ ︷︷ ︸
32

00 . . . 0︸ ︷︷ ︸
31

1 11 . . . 1︸ ︷︷ ︸
32

00 . . . 0︸ ︷︷ ︸
32

13: s & = 1 00 . . . 0︸ ︷︷ ︸
31

1 00 . . . 0︸ ︷︷ ︸
31

1 00 . . . 0︸ ︷︷ ︸
31

1 00 . . . 0︸ ︷︷ ︸
32

14: s = ∼ (s − 1) 11 . . . 1︸ ︷︷ ︸
32

11 . . . 1︸ ︷︷ ︸
32

11 . . . 1︸ ︷︷ ︸
32

00 . . . 0︸ ︷︷ ︸
32
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Weakness [PRDCF16]9

Leakage Step 15:

C̃pi = (s & k)︸ ︷︷ ︸
true only if s=11...1

else false

| ((∼ s) & µ)︸ ︷︷ ︸
true only if s=00...0

else false

Giving:

h
0 1 2 j n − 1

k = 0 k = C̃j

9M. Petrvalský, T. Richmond, M. Drutarovský, P.-L. Cayrel and V. Fischer,
Differential power analysis attack on the secure bit permutation in the
McEliece cryptosystem, IEEE Radioelektronika 2016.
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DPA on the ciphertext permutation [PRDCF16]

P-1

1st m easurem ent:

2nd m easurem ent:

3rd m easurem ent:

4th m easurem ent:

Known to attacker

Permutation matrix Bit permuted ciphertextsInput random
ciphertexts (CCA)

1 1 1

1 1

1

1 1

0

0 0

00 0

0 0

1

1

0

0

1

1

1

0

1

0

0

0

1

1

0

0

Secret data

DPA

Leakage Reconstruction of the P matrix

AttackPower consumption
traces

P-1* = 

CA for 1st bit:

CA for 4th bit:

CA for 3rd bit:

CA for 2nd bit:

Correlation analyses (CAs)
for each bit

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

Reconstructed P-1 matrix
by analysing CAs
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Trace example [PRDCF16]
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Countermeasure [PRDCF16]
Algorithm

Inputs: Private permutation matrix P−1 ∈ Fn×n
2 represented by a

lookup table tP
−1

, ciphertext C̃ ∈ Fn
2 and private generator matrix

G of Γ(L ,G ).

1. Randomly choose B ∈ Γ(L ,G)

2. Bp = B · P
3. C̃ ′ = C̃ ⊕ Bp

4. For i = 0 to n − 1

5. j = tP
−1

i

6. C̃pi
′ = 0

7. For h = 0 to n − 1

8. k = C̃pi
′

9. µ = C̃h
′

10. s = j ⊕ h

11. s |= s � 1

12. s |= s � 2

13. s |= s � 4

14. s |= s � 8

15. s |= s � 16

16. s & = 1

17. s = ∼ (s − 1)

18. C̃pi
′ = (s & k) | ((∼ s) & µ)

19. Endfor

20. Endfor

21. Return C̃p
′

Output: Permuted ciphertext C̃ ′p ∈ Fn
2 masked by a codeword.
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Countermeasure [PRDCF16]
Main idea

From masked ciphertext to masked permuted ciphertext:

C̃ ′p = C̃ ′ · P−1

= (C̃ ⊕ Bp) · P−1

= C̃ · P−1 ⊕ (B · P) · P−1

= C̃p ⊕ B.

From masked permuted ciphertext to the same syndrome than
non-masked ciphertext:

S = C̃ ′p · HT

= (C̃p ⊕ B) · HT

= C̃p · HT ⊕ B · HT︸ ︷︷ ︸
=0

= C̃p · HT .
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Countermeasure [PRDCF16]
Scheme

P-1

1st m easurem ent:

2nd m easurem ent:

3rd m easurem ent:

4th m easurem ent:

Known to attacker

Input random
ciphertexts (CCA)

0

Secret data

Modified Goppa codewords
for all four ciphertexts

pB1 pB2 pB3 pB4

⊕

Bit permuted ciphertexts
with added codewords

00

0

0 0 0

00

0

0 0

0 0 1 1

1 1 1 1

11

1 11 1 1

1 1

1

1 1
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Countermeasure [PRDCF16]
Trace example
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Conclusion

Two power consumption attacks with chosen single-one ciphertexts
targeting the private permutation in the McEliece cryptosystem:

• analysis of the two first steps in the McEliece decryption:
ciphertext permutation and syndrome computation,

• SPA against the syndrome computation implemented on a
microcontroller,

• masking countermeasure to avoid branches,

• DPA against the ’secure’ permutation algorithm implemented
on a microcontroller,

• masking countermeasure (with n more bits and not a huge
amount of additional computations),

• both PA attacks are not depending on the code structure,
so possible for others linear codes than Goppa codes.
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Perspectives
Four profiles of implementation [HMP10]

for ciphertext permutation and syndrome computation

Profile I Profile II

C̃p = C̃ · P−1 C̃p = C̃ · P−1

Polynomial operations S = C̃p · HT

for Goppa codes Γ(L ,G ) with L and G

Profile III Profile IV
Lp ≈ L · P HT

p = P−1 · HT

Polynomial operations S = C̃ · HT
p

for Goppa codes Γ(L ,G ) with Lp and G

Best choice!
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Perspectives

• Try a higher-order power consumption or a template attack
for the countermeasure against PA,

• Goppa polynomial recovering after getting the private
permutation matrix and knowing the support elements order
in the McEliece public key cryptosystem.
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Low-Complexity Power Analysis Countermeasure for
Resource-Constrained Embedded McEliece Implementation

Tania RICHMOND

Thank you for your attention!

43 / 43



Remark on the last presented countermeasure

If we considere that we get the codeword without error at the end
of the decoding, then we must keep the mask codeword to
unmask, otherwise the error vector to remove it from the received
ciphertext.
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Traces analysis [PRDCF16]

• Apply a Hamming weight of individual bits leakage model:
Hi ∈ {0, 1},

• Use correlation coefficient to test our hypotheses compared
with measurements,

• Good hypothesis if the coefficient is (almost) 1 or -1,

• Average of 500 traces per ciphertext hypothesis to avoid noise,

• Chosen ciphertexts as every vectors of weight 1.
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Pearson’s correlation coefficient
We used for correlation analyses:

rH,X (η) =

N∑
i=1

[(Xi (η)− X̄ (η))(Hi − H̄)]√√√√ N∑
i=1

[Xi (η)− X̄ (η)]2
N∑
i=1

(Hi − H̄)2

where rH,X (η) is the Pearson’s correlation coefficient for η-th
sample (measured during execution of the cryptographic
algorithm), N is a number of measured traces, Xi (η) is a value of
η-th sample measured during i-th measurement (i-th trace), X̄ (η)
is a mean value of corresponding η-th samples (from all traces), Hi

is a hypothesis of power consumption for one bit of input data
corresponding with i-th measurement (i-th trace) and H̄ is a mean
value of all hypotheses Hi .
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