Motivation	and	goals
0000		

00

F-T architectures

Measurement

Results

Conclusion

Influence of Fault-Tolerant Design Techniques on Resistance against Differential Power Analysis

Vojtěch Miškovský

Czech Technical University in Prague Faculty of Information Technology Department of Digital Design

> CryptArchi 2017 June 18–21, Smolenice

Motivation and goals	DPA	F-T architectures	Measurement	Results	Conclusion
0000	00	000000	000	00	

Motivation and goals

DPA

Fault-tolerant architectures

Measurement

Results

Conclusion

Motivation and goals	DPA 00	F-T architectures	Measurement	Results	Conclusion		
Motivation							

- Reliability and security are often demanded at the same time
- Both fault-tolerant and attack-resistant design techniques usually have high area and power consumption overhead, that means even higher overhead when both are used
- The overhead of fault-tolerant design can influence the attack-resistance of the device
- The overhead of attack-resistant design can influence the reliability of the device

Motivation and goals ○●○○	DPA 00	F-T architectures	Measurement	Results	Conclusion		
Long-term goals							

- Examine the mutual influence of fault-tolerant and attack-resistant digital design architectures
- Discover some interplay between F-T and A-R design and use it to design both F-T and A-R architecture with lower summary overhead

Motivation and goals ○○●○	DPA 00	F-T architectures	Measurement	Results	Conclusion			
Current work								

- Only attacks based on physical properties of the device (like side-channel attacks or fault attacks) are related to digital design
- We started with the most common one Differential power analysis (DPA)
- We experimentally evaluate how basic fault-tolerant architectures affects the resistance against DPA
- FPGA implementation of AES is used

Motivation	and	goals
0000		

DPA 00 F-T architectures

Measurement

Results

Conclusion

Related work

Similar study was presented by Regazzoni et al.¹

Table: Comparison of key features of Regazzoni et al. approach and our approach

Regazzoni	Our Approach
Fault attack resistant design	Fault-tolerant design
S-Box protected	the whole encryptor protected
ASIC	FPGA
Simulated power consumption	Real power consumption

Regazzoni concluded that the designs protected against fault attacks are more vulnerable to power attacks.

¹Francesco Regazzoni et al. "Interaction between fault attack countermeasures and the resistance against power analysis attacks". In: *Fault* Analysis in Cryptography. Springer, 2012, pp. 257–272 a context at a context of the second secon

tivation and goals	DPA	F-T architectures	Measurement	Results	Conclusion
00	•0	0000000	000	00	

Differential Power Analysis

- Side-channel attack, introduced by Kocher et al.²
- Exploits the fact that a variable in the implementation exists, that its value
 - depends on the plain/cipher text used,
 - depends on a part of a key,
 - and correlates with the power consumption of the device
- Correlation power analysis is an enhanced variant of DPA, attacking one byte of a key at a time, analyzing correlation between:
 - measured power consumption samples
 - and estimated power consumption model, based on plain/cipher text and a one of the key candidates

²Paul Kocher, Joshua Jaffe, and Benjamin Jun. "Differential power analysis". In: Annual International Cryptology Conference. Springer. 1999, pp. 388–397.

Motivation and goals	DPA	F-T architectures	Measurement	Results	Conclusion
0000	00	000000	000	00	

Fault-tolerant architectures

These fault-tolerant architectures were used:

- Information redundancy S-Box Parity check (AES-SPC)
- Space redundancy
 - round level (AES-HR-R)
 - algorithm level (AES-HR-A)
- Time redundancy
 - round level (AES-TR-R)
 - algorithm level (AES-TR-A)

Motivation and goals	DPA	F-T architectures	Measurement	Results	Conclusion
0000	00	000000	000	00	

Plain AES implementation

128-bit variant, 10 rounds

11 clock cycle per encryption (1 initial round + 10 rounds) After each round the state word is stored in a register

Motivation and goals	DPA	F-T architectures	Measurement	Results	Conclusion
0000	00	000000	000	00	

Information redundancy

S-Box (SubBytes function) is secured by parity Two parity predictors are used:

- Input parity predictor
- Output parity predictor

Space redundancy — Round level

The round is protected by TMR (3 copies and a majority voter)

Motivation and goals	DPA	F-T architectures	Measurement	Results	Concl
0000	00	0000000	000	00	

Space redundancy — Algorithm level

The whole AES is protected by TMR (3 copies and a majority voter)

Motivation and goals	DPA	F-T architectures	Measurement	Results	Conclusion
0000	00	0000000	000	00	

Time redundancy — Round level

Each round is repeated 3 times and the results are compared by a majority voter Only works for transient faults

Motivation and goals	DPA	F-T architectures	Measurement	Results
0000	00	000000	000	00

Time redundancy — Algorithm level

The whole algorithm is repeated 3 times and the results are compared by a majority voter Only works for transient faults

Motivation and goals	DPA	F-T architectures	Measurement	Results	Conclusion
0000	00	0000000	•00	00	

Measurement — Hardware

Evariste II board with Altera Cyclone III FPGA module was chosen as an implementation ${\rm platform}^3$

Power consumption was measured by PicoScope 6404D

³Viktor Fischer, Florent Bernard, and Patrick Haddad. "An open-source multi-FPGA modular system for fair benchmarking of true random number generators". In: *Field Programmable Logic and Applications (FPL)*, 2013 23rd International Conference on. IEEE. 2013, pp. 1–4.

	Mos	suromont -	- Software		
Motivation and goals	DPA 00	F-T architectures	Measurement ○●○	Results	Conclusion

- We developed our own application for DPA
- The correlation calculations are time and memory efficient, highly parallelizable and numerically stable
- Qualities of the application were published at DDECS 2017⁴
- Now we work on GPU implementation
- This application is planned to be extended to a whole DPA framework and published under open-source license

⁴Petr Socha et al. "Optimization of Pearson correlation coefficient calculation for DPA and comparison of different approaches". In: 2017 IEEE 20th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS). 2017, pp. 184–189. DOI: 10.1109/DDECS.2017.7934563 2000

Motivation and goals	DPA 00	F-T architectures	Measurement ○○●	Results	Conclusion			
Experiment setup								

- We obtained 50 sets of 2000 power traces for each F-T variant of AES, 1000 samples per power trace
- For each set, we performed the DPA with various number of power traces to find the minimal numbers of power traces sufficient to obtain the correct cipher key (*minTraces*)
- The AES variants are compared by medians of the *minTraces*
- Lower *minTraces* means lower resistance against DPA (it is easier to perform the attack)

Table: Comparison of AES variants based on median and interquartile range of *minTraces* (minimal number of power traces needed to reveal the correct key) 6

Architecture	Median	Interquartile range	Diff. from AES
AES	850	175 (20.5%)	0%
AES-SPC	950	250 (26.3%)	+12%
AES-HR-R	900	275 (30.5%)	+6%
AES-HR-A	812	150 (18.5%)	-4%
AES-TR-R	1025	250 (24.4%)	+21%
AES-TR-A	1037	275 (26.5%)	+22%

Motivation and goals	DPA 00	F-T architectures	Measurement	Results ○●	Conclusion	
Results						

⁶SPC — S-Box parity check, HR — space redundancy, TR — time redundancy; R — round level, A — algorithm level

Motivation and goals	DPA 00	F-T architectures	Measurement	Results	Conclusion		
Conclusion							

- We show that basic redundancy techniques have insignificant influence on resistance against DPA on implementation not secured against DPA
- We presume these techniques can be used to make DPA resistant devices fault-tolerant
- This statement should be verified using e.g. another FPGA platforms
- Our results are contrary to results presented by Regazzoni et al. We believe that the main reason is the different power consumption evaluation (simulation vs. real measurement)

< 口 > < 同 >

Motivation and goals	DPA	F-T architectures	Measurement	Results	Conclusion
0000	00	000000	000	00	

Acknowledgment

This research has been partially supported by the grant GA16-05179S of the Czech Grant Agency, "Fault-Tolerant and Attack-Resistant Architectures Based on Programmable Devices: Research of Interplay and Common Features" (2016-2018) and CTU project SGS17/213/OHK3/3T/18.

