

The Design-Time Side-Channel Information Leakage Estimation

Jan Bělohoubek

jan.belohoubek@fit.cvut.cz

Czech Technical University in Prague Prague, Czech Republic

CryptArchi 2017, Smolenice - Slovakia

Digital circuits offer sensitive information during computation (side-channel)

Today circuit designers compete with attackers:

- Designers are trying to build circuits resistant to SPA, DPA, Fault-attack, Combined (Fault + PA) ...
- \rightarrow **Decrease** the information offered thru side-channel
- \rightarrow Measure the information offered thru side-channel

- Digital circuits offer sensitive information during computation (side-channel)
- Today circuit designers compete with attackers:
 - Designers are trying to build circuits resistant to SPA, DPA, Fault-attack, Combined (Fault + PA) ...
 - \rightarrow **Decrease** the information offered thru side-channel
 - $\rightarrow~$ Measure the information offered thru side-channel

- Digital circuits offer sensitive information during computation (side-channel)
- Today circuit designers compete with attackers:
 - Designers are trying to build circuits resistant to SPA, DPA, Fault-attack, Combined (Fault + PA) ...
 - $\rightarrow~$ Decrease the information offered thru side-channel
 - $\rightarrow~$ Measure the information offered thru side-channel

- Digital circuits offer sensitive information during computation (side-channel)
- Today circuit designers compete with attackers:
 - Designers are trying to build circuits resistant to SPA, DPA, Fault-attack, Combined (Fault + PA) ...
 - \rightarrow **Decrease** the information offered thru side-channel
 - $\rightarrow~$ Measure the information offered thru side-channel

- Digital circuits offer sensitive information during computation (side-channel)
- Today circuit designers compete with attackers:
 - Designers are trying to build circuits resistant to SPA, DPA, Fault-attack, Combined (Fault + PA) ...
 - \rightarrow **Decrease** the information offered thru side-channel
 - \rightarrow **Measure** the information offered thru side-channel

of Information Technology

Motivation Leakage Sources

- Unbalanced data/control paths (Different loads, Place&Route, Early evaluation)
- Unbalanced computation (data-dependent algorithms)
 - Completion detection asynchronous circuits

of Information Technology

Motivation Leakage Sources

- Unbalanced data/control paths (Different loads, Place&Route, Early evaluation)
- Unbalanced computation (data-dependent algorithms)
 - Completion detection asynchronous circuits

of Information Technology

Motivation Leakage Sources

- Unbalanced data/control paths (Different loads, Place&Route, Early evaluation)
- Unbalanced computation (data-dependent algorithms)
 - Completion detection asynchronous circuits

Motivation Localize Weakness and Estimate Potential

• (Some of the) ASIC design phases

- Synthesis
- Map
- Place&Route

Motivation Localize Weakness and Estimate Potential

• (Some of the) ASIC design phases

- Synthesis
- Map
- Place&Route

How to distinguish good idea¹ and bad idea during the different design phases?

- post-Synthesis what can be achieved with current design?
- post-Map what can be achieved with current cell library?
- post-Place&Route how will behave the physical design?

¹Is a certain circuit implementation better from the side-channel vulnerability point of view?

How to distinguish good idea¹ and bad idea during the different design phases?

- post-Synthesis what can be achieved with current design?
- post-Map what can be achieved with current cell library?
- post-Place&Route how will behave the physical design?

¹Is a certain circuit implementation better from the side-channel vulnerability point of view?

Production time

Number of traces needed to break the circuit (get AES key)

Design time

- Use number of traces ² accurate simulation + many traces → time !?
- Use well established methods make conservative (but subjective) estimation → accuracy !?
- Do we have objective and efficient metric?

²K. Smith and M. Łukowiak, "Methodology for simulated power analysis attacks on AES," 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, San Jose, CA, 2010, pp. 1292-1297.

Production time

Number of traces needed to break the circuit (get AES key)

Design time

- Use number of traces ² accurate simulation + many traces → time !?
- Use well established methods make conservative (but subjective) estimation → accuracy !?
- Do we have objective and efficient metric?

²K. Smith and M. Łukowiak, "Methodology for simulated power analysis attacks on AES," 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, San Jose, CA, 2010, pp. 1292-1297.

Production time

Number of traces needed to break the circuit (get AES key)

Design time

■ Use number of traces ² – accurate simulation + many traces → time !?

■ Use well established methods – make conservative (but subjective) estimation → accuracy !?

Do we have objective and efficient metric?

²K. Smith and M. Łukowiak, "Methodology for simulated power analysis attacks on AES," 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, San Jose, CA, 2010, pp. 1292-1297.

Production time

Number of traces needed to break the circuit (get AES key)

Design time

- Use number of traces ² accurate simulation + many traces → time !?
- Use well established methods make conservative (but subjective) estimation → accuracy !?
- Do we have objective and efficient metric?

²K. Smith and M. Łukowiak, "Methodology for simulated power analysis attacks on AES," 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, San Jose, CA, 2010, pp. 1292-1297.

Production time

Number of traces needed to break the circuit (get AES key)

Design time

- Use number of traces ² accurate simulation + many traces → time !?
- Use well established methods make conservative (but subjective) estimation → accuracy !?
- Do we have objective and efficient metric?

²K. Smith and M. Łukowiak, "Methodology for simulated power analysis attacks on AES," 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, San Jose, CA, 2010, pp. 1292-1297.

- Timing differential peak position; duration of the computation
- Fault differential peak position, width or height; duration of the computation
- Unbalanced paths differential peak position, width or height
- $\rightarrow\,$ Many types of information leakage are aggregated in power traces
- \rightarrow Using only power traces for vulnerability evaluation is sufficient

- Timing differential peak position; duration of the computation
- Fault differential peak position, width or height; duration of the computation
- Unbalanced paths differential peak position, width or height
- $\rightarrow\,$ Many types of information leakage are aggregated in power traces
- \rightarrow Using only power traces for vulnerability evaluation is sufficient

- Timing differential peak position; duration of the computation
- Fault differential peak position, width or height; duration of the computation
- Unbalanced paths differential peak position, width or height
- $\rightarrow\,$ Many types of information leakage are aggregated in power traces
- \rightarrow Using only power traces for vulnerability evaluation is sufficient

- Timing differential peak position; duration of the computation
- Fault differential peak position, width or height; duration of the computation
- Unbalanced paths differential peak position, width or height
- $\rightarrow\,$ Many types of information leakage are aggregated in power traces
- \rightarrow Using only power traces for vulnerability evaluation is sufficient

- Timing differential peak position; duration of the computation
- Fault differential peak position, width or height; duration of the computation
- Unbalanced paths differential peak position, width or height
- $\rightarrow\,$ Many types of information leakage are aggregated in power traces
- \rightarrow Using only power traces for vulnerability evaluation is sufficient

- Timing differential peak position; duration of the computation
- Fault differential peak position, width or height; duration of the computation
- Unbalanced paths differential peak position, width or height
- $\rightarrow\,$ Many types of information leakage are aggregated in power traces
- \rightarrow Using only power traces for vulnerability evaluation is sufficient

What is Required?

- Fast vulnerability estimation allowing incorporation into the design flow process
- Measure the information contained in power trace
- Estimation at different design levels post-Synthesis, post-Map, post-Place&Route

- The information in the power trace is proportional to the similarity of traces
 - $\rightarrow\,$ If all traces would be equal, the attacker can extract no information
 - $\rightarrow\,$ If there is a dependency between the processed data and power trace patterns, the attacker may extract information

What is Required?

- Fast vulnerability estimation allowing incorporation into the design flow process
- Measure the information contained in power trace
- Estimation at different design levels post-Synthesis, post-Map, post-Place&Route

- The information in the power trace is proportional to the similarity of traces
 - $\rightarrow\,$ If all traces would be equal, the attacker can extract no information
 - $\rightarrow\,$ If there is a dependency between the processed data and power trace patterns, the attacker may extract information

What is Required?

- Fast vulnerability estimation allowing incorporation into the design flow process
- Measure the information contained in power trace
- Estimation at different design levels post-Synthesis, post-Map, post-Place&Route

- The information in the power trace is proportional to the similarity of traces
 - $\rightarrow\,$ If all traces would be equal, the attacker can extract no information
 - $\rightarrow\,$ If there is a dependency between the processed data and power trace patterns, the attacker may extract information

What is Required?

- Fast vulnerability estimation allowing incorporation into the design flow process
- Measure the information contained in power trace
- Estimation at different design levels post-Synthesis, post-Map, post-Place&Route

- The information in the power trace is proportional to the similarity of traces
 - $\rightarrow\,$ If all traces would be equal, the attacker can extract no information
 - $\rightarrow\,$ If there is a dependency between the processed data and power trace patterns, the attacker may extract information

What is Required?

- Fast vulnerability estimation allowing incorporation into the design flow process
- Measure the information contained in power trace
- Estimation at different design levels post-Synthesis, post-Map, post-Place&Route

- The information in the power trace is proportional to the similarity of traces
 - $\rightarrow\,$ If all traces would be equal, the attacker can extract no information
 - $\rightarrow\,$ If there is a dependency between the processed data and power trace patterns, the attacker may extract information

What is Required?

- Fast vulnerability estimation allowing incorporation into the design flow process
- Measure the information contained in power trace
- Estimation at different design levels post-Synthesis, post-Map, post-Place&Route

- The information in the power trace is proportional to the similarity of traces
 - $\rightarrow\,$ If all traces would be equal, the attacker can extract no information
 - $\rightarrow\,$ If there is a dependency between the processed data and power trace patterns, the attacker may extract information

What is Required?

- Fast vulnerability estimation allowing incorporation into the design flow process
- Measure the information contained in power trace
- Estimation at different design levels post-Synthesis, post-Map, post-Place&Route

- The information in the power trace is proportional to the similarity of traces
 - $\rightarrow\,$ If all traces would be equal, the attacker can extract no information
 - $\rightarrow\,$ If there is a dependency between the processed data and power trace patterns, the attacker may extract information

The Method Data vs. Power Trace Dependency

Let's search for data vs. power trace dependency

- Data similarity metric: Hamming distance
- Power trace similarity metric: Pearson correlation
- \rightarrow Is correlation of traces for similar data high and for different data (significantly) low?

The Method – Expectations Data vs. Power Trace Dependency

Methodology The Current Design Potential

Faculty of Information Technology

post-Synthesis – what can be achieved with current design?

- No physical layer information!
- Is simulation-based estimation possible? It is not possible without any assumption about technology!

post-Map – what can be achieved with current cells?

- Take information about cells only (parasitic capacitances, conductivity, ...)
- Interconnection is assumed ideally balanced (or zero delay/power)
- Place&Route can make things worse
- post-Place&Route the "reality"
 - Should be close to physical design

- post-Synthesis what can be achieved with current design?
 - No physical layer information!
 - Is simulation-based estimation possible? It is not possible without any assumption about technology!

post-Map – what can be achieved with current cells?

- Take information about cells only (parasitic capacitances, conductivity, ...)
- Interconnection is assumed ideally balanced (or zero delay/power)
- Place&Route can make things worse
- post-Place&Route the "reality"
 - Should be close to physical design

- post-Synthesis what can be achieved with current design?
 - No physical layer information!
 - Is simulation-based estimation possible? It is not possible without any assumption about technology!
- post-Map what can be achieved with current cells?
 - Take information about cells only (parasitic capacitances, conductivity, ...)
 - Interconnection is assumed ideally balanced (or zero delay/power)
 - Place&Route can make things worse
- post-Place&Route the "reality"
 - Should be close to physical design

- post-Synthesis what can be achieved with current design?
 - No physical layer information!
 - Is simulation-based estimation possible? It is not possible without any assumption about technology!
- post-Map what can be achieved with current cells?
 - Take information about cells only (parasitic capacitances, conductivity, ...)
 - Interconnection is assumed ideally balanced (or zero delay/power)
 - Place&Route can make things worse
- post-Place&Route the "reality"
 - Should be close to physical design

- post-Synthesis what can be achieved with current design?
 - No physical layer information!
 - Is simulation-based estimation possible? It is not possible without any assumption about technology!
- post-Map what can be achieved with current cells?
 - Take information about cells only (parasitic capacitances, conductivity, ...)
 - Interconnection is assumed ideally balanced (or zero delay/power)
 - Place&Route can make things worse
- post-Place&Route the "reality"
 - Should be close to physical design

- post-Synthesis what can be achieved with current design?
 - No physical layer information!
 - Is simulation-based estimation possible? It is not possible without any assumption about technology!
- post-Map what can be achieved with current cells?
 - Take information about cells only (parasitic capacitances, conductivity, ...)
 - Interconnection is assumed ideally balanced (or zero delay/power)
 - Place&Route can make things worse
- post-Place&Route the "reality"
 - Should be close to physical design

- post-Synthesis what can be achieved with current design?
 - No physical layer information!
 - Is simulation-based estimation possible? It is not possible without any assumption about technology!
- post-Map what can be achieved with current cells?
 - Take information about cells only (parasitic capacitances, conductivity, ...)
 - Interconnection is assumed ideally balanced (or zero delay/power)
 - Place&Route can make things worse
- post-Place&Route the "reality"
 - Should be close to physical design

SingleRail

SingleRail

(nand2, inv)

post-Map – which implementation is better (with current cells)?

post-Place&Route – how bad/good is the result after Place&Route?

■ post-Map → post-Place&Route – how bad/good is Place&Route itself?

Methodology Combinational Circuits

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- $\rightarrow\,$ The stimuli set contains vectors with Hamming distances (0%-100%)
- Use stimuli to get power traces (simulation)

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- $\rightarrow\,$ The stimuli set contains vectors with Hamming distances (0%-100%)
- Use stimuli to get power traces (simulation)

Faculty of Information Technology

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- $\rightarrow\,$ The stimuli set contains vectors with Hamming distances (0%-100%)
- Use stimuli to get power traces (simulation)

Faculty of Information Technology

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- $\rightarrow\,$ The stimuli set contains vectors with Hamming distances (0%-100%)
- Use stimuli to get power traces (simulation)

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- \rightarrow The stimuli set contains vectors with Hamming distances (0% 100%)
- Use stimuli to get power traces (simulation)

Faculty of Information Technology

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- $\rightarrow\,$ The stimuli set contains vectors with Hamming distances (0%-100%)
- Use stimuli to get power traces (simulation)
- Compute Pearson correlation for all pairs of power traces
- Build a data-set containing pairs: [Hamming distance, Correlation] (plot . . .)

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- $\rightarrow\,$ The stimuli set contains vectors with Hamming distances (0%-100%)
- Use stimuli to get power traces (simulation)
- Compute Pearson correlation for all pairs of power traces
- Build a data-set containing pairs: [Hamming distance, Correlation] (plot . . .)

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- $\rightarrow\,$ The stimuli set contains vectors with Hamming distances (0%-100%)
- Use stimuli to get power traces (simulation)
- Compute Pearson correlation for all pairs of power traces
- Build a data-set containing pairs: [Hamming distance, Correlation] (plot . . .)

Stimuli

Faculty of Information Technology

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- $\rightarrow\,$ The stimuli set contains vectors with Hamming distances (0% 100 %)
- Use stimuli to get power traces (simulation)
- Compute Pearson correlation for all pairs of power traces
- Build a data-set containing pairs: [Hamming distance, Correlation] (plot . . .)
- Compare different implementations: formulate hypothesis and test by using the t-test

- Initial vector is generated randomly
- Other vectors are derived by inverting bits in the initial vector
- $\rightarrow\,$ The stimuli set contains vectors with Hamming distances (0% 100 %)
- Use stimuli to get power traces (simulation)
- Compute Pearson correlation for all pairs of power traces
- Build a data-set containing pairs: [Hamming distance, Correlation] (plot . . .)
- Compare different implementations: formulate hypothesis and test by using the t-test

dualRail singleRail Pearson correlation T-Test (power traces) ----- dualRail ------ singleRail 0 Hamming distance [%] 100 (data)

Faculty of Information Technology

Spice – open (ngSpice); too accurate; too slow

Synopsys PrimeTime PX – commercial – looks fine (not tested yet)

IRSIM – open alternative to PTPX?; fast; too old

- Produces event times, not power traces (poweEst package is available)
- Good for CMOS with lambda $\geq 1 \; \mu m$ technology
- For CMOS below 1 μm, the results looks bad characterization failed ...

- Spice open (ngSpice); too accurate; **too slow**
- Synopsys PrimeTime PX commercial looks fine (not tested yet)

IRSIM – open alternative to PTPX?; fast; too old

- Produces event times, not power traces (poweEst package is available)
- \blacksquare Good for CMOS with lambda $\geq 1~\mu m$ technology
- For CMOS below 1 μm, the results looks bad characterization failed ...

- Spice open (ngSpice); too accurate; too slow
- Synopsys PrimeTime PX commercial looks fine (not tested yet)
- IRSIM open alternative to PTPX?; fast; too old
 - Produces event times, not power traces (poweEst package is available)
 - \blacksquare Good for CMOS with lambda $\geq 1~\mu m$ technology
 - For CMOS below 1 μm, the results looks bad characterization failed ...

- Spice open (ngSpice); too accurate; **too slow**
- Synopsys PrimeTime PX commercial looks fine (not tested yet)
- IRSIM open alternative to PTPX?; fast; too old
 - Produces event times, not power traces (poweEst package is available)
 - \blacksquare Good for CMOS with lambda $\geq 1~\mu m$ technology
 - For CMOS below 1 μm, the results looks bad characterization failed ...

- Spice open (ngSpice); too accurate; **too slow**
- Synopsys PrimeTime PX commercial looks fine (not tested yet)
- IRSIM open alternative to PTPX?; fast; too old
 - Produces event times, not power traces (poweEst package is available)
 - Good for CMOS with lambda $\geq 1 \; \mu m$ technology
 - For CMOS below 1 μm, the results looks bad characterization failed ...

- Spice open (ngSpice); too accurate; too slow
- Synopsys PrimeTime PX commercial looks fine (not tested yet)

IRSIM – open alternative to PTPX?; fast; too old

- Produces event times, not power traces (poweEst package is available)
- Good for CMOS with lambda $\geq 1 \ \mu m$ technology
- For CMOS below 1 μm, the results looks bad characterization failed ...

Simulation Combinational circuits

- Stimuli set contains *i* vectors, where *i* is equal to # of circuit inputs
- \rightarrow We have $i^2/2$ pairs of vectors with all possible Hamming distances
 - The number of stimuli vectors is reduced
 - SPICE simulation is feasible for relatively small circuits like C3540:
 - $lpha \approx 1000$ gates
 - 50 inputs
 - 1250 input vector and power trace pairs

Simulation Combinational circuits

- Stimuli set contains *i* vectors, where *i* is equal to # of circuit inputs
- \rightarrow We have $i^2/2$ pairs of vectors with all possible Hamming distances
 - The number of stimuli vectors is reduced
 - SPICE simulation is feasible for relatively small circuits like C3540:
 - $lpha \approx 1000$ gates
 - 50 inputs
 - 1250 input vector and power trace pairs

Simulation Combinational circuits

- Stimuli set contains *i* vectors, where *i* is equal to # of circuit inputs
- \rightarrow We have $i^2/2$ pairs of vectors with all possible Hamming distances
 - The number of stimuli vectors is reduced
 - SPICE simulation is feasible for relatively small circuits like C3540:
 - $lpha \approx 1000$ gates
 - 50 inputs
 - 1250 input vector and power trace pairs

Simulation Combinational circuits

- Stimuli set contains *i* vectors, where *i* is equal to # of circuit inputs
- \rightarrow We have $i^2/2$ pairs of vectors with all possible Hamming distances
 - The number of stimuli vectors is reduced
 - SPICE simulation is feasible for relatively small circuits like C3540:
 - ho pprox 1000 gates
 - 50 inputs
 - 1250 input vector and power trace pairs

Simulation – SPICE DualRail

Faculty of Information Technology

- DualRail layout (TSMC180nm) of the benchmark circuit C3540
- Precise SPICE simulation looks very similar to measured data! (C3540 is similar to DES)

Simulation – SPICE DualRail

Faculty of Information Technology

- DualRail layout (TSMC180nm) of the benchmark circuit C3540
- + Precise SPICE simulation looks very similar to measured data! (C3540 is similar to DES)

Measurements 3 Years Ago ... CryptArchi 2014

Faculty of Information Technology

Real measurements – Asynchronous dualRail DES on FPGA

Simulation – SPICE SingleRail

Faculty of Information Technology

- SingleRail has less variation and the minimum of singleRail is above dualRail
- T-Test (not my eyes here!) says: singleRail is better! (a bit)

Simulation – SPICE SingleRail

Faculty of Information Technology

- SingleRail has less variation and the minimum of singleRail is above dualRail
- T-Test (not my eyes here!) says: singleRail is better!
 (a bit)

Simulation – SPICE Duplex of SingleRails (no voter)

Faculty of Information Technology

C3540

The sum of two singleRails is equal to the single SingleRail – no additional information leakage!

- 1 More logic working data-dependently is bad \rightarrow information leakage is increased
 - both branches of DualRail circuits perform data-dependent computations → balancing becomes extremely important!
- 2 Adding more logic blocks producing exactly the same power traces is OK \rightarrow NMR will not increase information leakage

- 1 More logic working data-dependently is bad \rightarrow information leakage is increased
 - both branches of DualRail circuits perform data-dependent computations → balancing becomes extremely important!
- 2 Adding more logic blocks producing exactly the same power traces is OK \rightarrow NMR will not increase information leakage

- 1 More logic working data-dependently is bad \rightarrow information leakage is increased
 - both branches of DualRail circuits perform data-dependent computations → balancing becomes extremely important!
- 2 Adding more logic blocks producing exactly the same power traces is OK \rightarrow NMR will not increase information leakage

- 1 More logic working data-dependently is bad \rightarrow information leakage is increased
 - both branches of DualRail circuits perform data-dependent computations → balancing becomes extremely important!
- $2\,$ Adding more logic blocks producing exactly the same power traces is OK \rightarrow NMR will not increase information leakage

- 1 More logic working data-dependently is bad \rightarrow information leakage is increased
 - both branches of DualRail circuits perform data-dependent computations → balancing becomes extremely important!
- 2 Adding more logic blocks producing exactly the same power traces is OK \rightarrow NMR will not increase information leakage

When manufacturing variations will be taken into account, the 2. case will slightly become case 1!

Is it possible to measure information leakage simpler?

- $\rightarrow\,$ the area of circuit parts performing data-dependent computations independently
 - Is singleRail really better than dualRail in practice? ...No!
- $\rightarrow\,$ Where are the limits of masking (balancing dual rails)?
- $\rightarrow\,$ What is the relationship of information leakage and circuit vulnerability?
- $\rightarrow\,$ Is the attacker's strength estimation without focusing to the particular attack possible?
 - There is no (open) efficient and accurate simulator of CMOS producing power traces.

- Is it possible to measure information leakage simpler?
- $\rightarrow\,$ the area of circuit parts performing data-dependent computations independently
 - Is singleRail really better than dualRail in practice? ...No!
- $\rightarrow\,$ Where are the limits of masking (balancing dual rails)?
- $\rightarrow\,$ What is the relationship of information leakage and circuit vulnerability?
- $\rightarrow\,$ Is the attacker's strength estimation without focusing to the particular attack possible?
 - There is no (open) efficient and accurate simulator of CMOS producing power traces.

- Is it possible to measure information leakage simpler?
- $\rightarrow\,$ the area of circuit parts performing data-dependent computations independently
 - Is singleRail really better than dualRail in practice? ... No!
- $\rightarrow\,$ Where are the limits of masking (balancing dual rails)?
- $\rightarrow\,$ What is the relationship of information leakage and circuit vulnerability?
- $\rightarrow\,$ Is the attacker's strength estimation without focusing to the particular attack possible?
 - There is no (open) efficient and accurate simulator of CMOS producing power traces.

- Is it possible to measure information leakage simpler?
- $\rightarrow\,$ the area of circuit parts performing data-dependent computations independently
 - Is singleRail really better than dualRail in practice? ...No!
- \rightarrow Where are the limits of masking (balancing dual rails)?
- $\rightarrow\,$ What is the relationship of information leakage and circuit vulnerability?
- $\rightarrow\,$ Is the attacker's strength estimation without focusing to the particular attack possible?
 - There is no (open) efficient and accurate simulator of CMOS producing power traces.

- Is it possible to measure information leakage simpler?
- $\rightarrow\,$ the area of circuit parts performing data-dependent computations independently
 - Is singleRail really better than dualRail in practice? ...No!
- \rightarrow Where are the limits of masking (balancing dual rails)?
- $\rightarrow\,$ What is the relationship of information leakage and circuit vulnerability?
- $\rightarrow\,$ Is the attacker's strength estimation without focusing to the particular attack possible?
 - There is no (open) efficient and accurate simulator of CMOS producing power traces.

- Is it possible to measure information leakage simpler?
- $\rightarrow\,$ the area of circuit parts performing data-dependent computations independently
 - Is singleRail really better than dualRail in practice? ...No!
- \rightarrow Where are the limits of masking (balancing dual rails)?
- $\rightarrow\,$ What is the relationship of information leakage and circuit vulnerability?
- $\rightarrow\,$ Is the attacker's strength estimation without focusing to the particular attack possible?
 - There is no (open) efficient and accurate simulator of CMOS producing power traces.

- Is it possible to measure information leakage simpler?
- $\rightarrow\,$ the area of circuit parts performing data-dependent computations independently
 - Is singleRail really better than dualRail in practice? ...No!
- \rightarrow Where are the limits of masking (balancing dual rails)?
- $\rightarrow\,$ What is the relationship of information leakage and circuit vulnerability?
- $\rightarrow\,$ Is the attacker's strength estimation without focusing to the particular attack possible?
 - There is no (open) efficient and accurate simulator of CMOS producing power traces.

of Information Technology

- The information leakage is proportional to the amount of logic working data-dependently!
- The presented method is able to estimate information leakage (fast open simulator is missing).
- Ideal duplex (no voters!) does not offer additional information to attacker.

This research has been partially supported by the grant GA16-05179S of the Czech Grant Agency and by CTU grant SGS17/213/OHK3/3T/18.

Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme "Projects of Large Research, Development, and Innovations Infrastructures".