An illustration of a new certification approach for True Random Number Generators (TRNG)

Elie Noumon Allini • Florent Bernard • Viktor Fischer

Laboratoire Hubert Curien, UMR 5516 CNRS Université Jean Monnet, Membre de l'Université de Lyon Saint-Etienne, France

CryptArchi, Smolenice, June 2017

Importance of Random number generators

Crucial component of cryptographic systems

- 🐥 Typical use
 - Key generation,
 - Initialization vector,
 - Counter measures against side channel attacks.
- Security relevance
 - Security of the whole system is based on the secret key
 - $\,\hookrightarrow\,$ Key must be generated as often as needed,
 - \hookrightarrow Unpredictable and non reproducible way;
 - Need of good random numbers.

Certification

Our device produces very good randomness

Bundesamt für Sicherheit in der Informationstechnik

Governmental organization

Is the TRNG embedded in your cryptographic device safe enough to ensure a high security level?

E. Noumon Allini • F. Bernard • V. Fischer An illustration of a new certification approach for TRNG

Evaluation process Conclusion

Types of Random Number Generation (RNG): 2 classes

Physical Random Number Generator (PRNG)

Physical

True-Random Numbers

Random Number Generator

- Exploits noisy analog phenomenon: thermal noise, flicker noise. . . .
- May produce random numbers looking not really random.
- Design challenging.

Deterministic Random Number Generator (DRNG)

Deterministic/algorithmic Seed

Pseudo-random numbers

Random Number Generator

- 🐥 Take a Seed as input.
- Algorithmic process is known.
- Security based on the Seed
- "Looks like" random numbers.

Question

How to evaluate properly the quality of a Random Number Generator?

Evaluation process Conclusion

A first approach for TRNG evaluation: Observation

- Battery of statistical tests (FIPS, NIST, DieHard) at the TRNG output.
- ♣ Problem 1 : even a full deterministic sequence can pass these tests ⇒ tests are necessary but not sufficient.

A first approach for TRNG evaluation: Observation

Battery of statistical tests (FIPS, NIST, DieHard) at the TRNG output.

🐥 Problem 2 :

Need to perform tests before post-processing.

A second approach for TRNG evaluation: proof/certification

Same as the classical approach plus:

- + Test the raw binary signal and estimate the entropy (min entropy) per generated bit
- + Provide embedded tests to detect a total failure of the noise source.

<u>Problem</u> : Entropy is not a property of the generated sequence but of the underlying random variables.

Stochastic model

 \Rightarrow Need a stochastic model to compute a lower bound (H_{min}) of the entropy per bit as close as possible to the source of entropy.

Stochastic Model

Problems:

- Model \neq Reality
- Need reasonable assumptions to work on random variables.
 - $\hookrightarrow\,$ Is the noise composed only of thermal noise 1 as it is almost always assumed in the TRNG state of the art?
- There is no generic Model: each TRNG principle must be described with a dedicated stochastic model.

¹Thermal noise is considered to be unavoidable and non manipulable (=) = /

Evaluation process Conclusion

3rd approach: Even closer to the entropy source

- Identify and Model each noise source.
- Design digitization process (entropy extractor) to extract maximum entropy.
- Provide a mathematical proof to compute a lower bound of entropy rate.
- Develop specific tests of the source of randomness to avoid a total failure of the entropy source and to monitor it "online".
- Work in progress: Workgroup "alea" with DGA-MI, ANSSI, Institut Fourier, LaHC-SESAM

Evaluation process

2 Conclusion

E. Noumon Allini • F. Bernard • V. Fischer An illustration of a new certification approach for TRNC

9

General overview of a hardware-based TRNG

Evaluation process

• Physical noise

• Analog to digital converter

Physical noise Analog to digital converter

Random number generator

Formal definition

Physical device

internal state
$$E: \mathbb{R}_+ \longrightarrow V$$

 $t \longmapsto E(t)$

- ▶ produces a sequence of bits $(b_{t_i})_{1 \leq i \leq n}$ in some given time.
- A Value of b_{t_i} knowing E is determined.

Example

Physical noise Analog to digital converter

Random number generator Internal state in the diagram

Evaluation process Conclusion

hysical noise Analog to digital converter

12

General principle of an oscillator based TRNG

Evaluation process Conclusion

hysical noise Analog to digital converter

13

General principle of an oscillator based TRNG

PLL-based TRNG

♣ Control of the phase difference between input and output signal of the PLL ⇒ Control of the drift that remains bounded.

Sampling example

- t_i : realizations of T_j ;
- φ_i : phase of *clj* at time iT_{clk} ,
 - $\hookrightarrow E(iT_{clk})$
 - \hookrightarrow $iT_{\mathit{clk}} + arphi_0 \mod T_{\mathit{clj}}$

- K_M : number of cycles of *clj*;
- K_D : number of samples,
 - \hookrightarrow number of cycles of *clk*.

Identification of the noise source

Requirement 1

The physical phenomenon at the origin of the unpredictable character of the generator operation must be well identified.

Identification of the noise source

Requirement 1

The physical phenomenon at the origin of the unpredictable character of the generator operation must be well identified.

Sources of entropy in PLL-TRNG

- Differential jitter (dynamic difference in phases)
 - between clock signals generated in two PLLs connected in parallel.
- Three sources can be recognized:
 - input clock jitter,
 - intrinsic noise of the PLL,
 - supply noise contributing to the PLL output clock jitter.

Input clock jitter

- Input jitter with frequency lower than the PLL bandwidth :
 - passed by the PLL without being modified (not filtered out).
- When frequency corresponds to the PLL bandwidth :
 - the closed loop transfer function of the PLL features a peak,
 - input jitter amplified by the relative size of the peak,
 - $\,\hookrightarrow\,$ depending on the loop damping factor.
- When frequency is higher than the PLL bandwidth
 - input jitter is attenuated at 20db/decade.

Conclusions

Jitter of the input clock should be as small as possible

- limit the PLL output jitter to the PLL intrinsic jitter,
- use of quartz.
- Input clock frequency should be as high as possible
 - much higher then the PLL bandwidth.

Intrinsic noise of the PLL

VCO contributes the most to PLL intrinsic noise.

- Main components of the PLL intrinsic noise :
 - Thermal noise
 - Flicker noise
- Flicker noise may be significantly reduced :
 - appropriate selection of multiplication and division factors.

Conclusions

Output clock frequency should be as high as possible

- reduce the contribution of the flicker noise.
- PLL bandwidth should be as large as possible
 - reduce the long term jitter at PLL output.

Supply noise contribution

Analog and digital supply noises contribute to the jitter :

- any fast (step) variation on the analog supply of the PLL
 - \hookrightarrow instantaneous change in VCO frequency,
 - \hookrightarrow reflected as jitter at the PLL output clock.
- any step variations on the digital supply of the PLL
 - \hookrightarrow a variation in the delay of the digital circuits,
 - $\,\hookrightarrow\,$ result in variation of the clock time period,
 - \hookrightarrow reflected as time period jitter at the PLL output.
- Fime period deviation is independent of the PLL output time period
 - unlike the deviation due to intrinsic device noises.

Conclusions

- 🐥 Analog and digital power supplies should use
 - linear regulators and a high quality filters;
- Digital power supplies powering the PLL
 - must not power also the FPGA core.

Characterization of the noise Stochastic model

Requirement 2

The physical noise must have a stochastic model $M(t, p_1, p_2, \cdots, p_n)$.

E. Noumon Allini • F. Bernard • V. Fischer

An illustration of a new certification approach for TRNG

Characterization of the noise Stochastic model

Requirement 2

The physical noise must have a stochastic model $M(t, p_1, p_2, \cdots, p_n)$.

Requirement 2bis

The physical noise stochastic model $M(t, p_1, p_2, \dots, p_n)$ should be used to get a probability distribution of TRNG the internal state $(\varphi(t))$.

$$\mathbb{P}(\varphi(t)|p_1,p_2,\cdots,p_n,\varphi(t_0)).$$

Parameters evaluation

Requirement 3

- \clubsuit It should be possible to evaluate the initial state φ_0 .
- **.** It should be possible to experimentally evaluate p_1, p_2, \cdots, p_n .
- It should be possible to evaluate measurement errors.

Physical noise Analog to digital converter

20

Parameters evaluation

Parameters evaluation

Requirement 3

- \clubsuit It should be possible to evaluate the initial state φ_0 .
- large larg
- It should be possible to evaluate measurement errors.

Measurement techniques

- $\clubsuit \varphi_0$ can be quite difficult to evaluate.
- **.** The number of unstable samples is directly related to parameter $p_1 = \sigma$.
- **.** The duty cycle can be approximated by $\frac{\#\{X_i=1\}}{K_D}$.

A way to circumvent evaluation of φ_0 A conservative approach

Worst case

Set a higher σ_{min} such that for **any** φ_0 we have $H_{min} \ge 0.997$.

Entropy rate as a periodic function of phi0

E. Noumon Allini • F. Bernard • V. Fischer

Stability of parameters

Requirement 4

Stability of parameters p_1, \cdots, p_n should be evaluated with regard to :

- physical environmental conditions (temperature, voltage, etc),
- technological environmental conditions,
- aging tests.

Physical noise Analog to digital converter

22

Stability of parameters

Stability of parameters

Requirement 4

Stability of parameters p_1, \cdots, p_n should be evaluated with regard to :

- physical environmental conditions (temperature, voltage, etc),
- technological environmental conditions,
- aging tests.

Case of the PLL-based generator

\clubsuit Jitter (σ) is bounded and duty cycle (α) close to 0.5 at the output,

- model should tolerate slight unbalances.
- Tests still on progress.

- Physical noise
- Analog to digital converter

Statistical model of a TRNG

Definition

- Statistical model of the TRNG
 - ▶ stochastic model $N(t, p_1, p_2, \cdots, p_n, q_1, q_2, \cdots, q_m)$
 - \hookrightarrow p_1, p_2, \cdots, p_n parameters of the physical noise model,
 - \hookrightarrow q_1, q_2, \cdots, q_m parameters of the TRNG;
 - values in the set of sequences of bits of arbitrary length.
- \clubsuit About parameters q_1, q_2, \cdots, q_m
 - some should be adjustable,
 - none should be manipulable (by an attacker).

Parameters in the case of a PLL-based TRNG

4 Initial internal state : φ_0 .

Physical noise Analog to digital converter

Statistical model of a TRNG

Requirement 5

A statistical model of the TRNG should be available and should use the probability distribution $\mathbb{P}(\varphi(t)|p_1, p_2, \cdots, p_n, \varphi(t_0))$.

E. Noumon Allini • F. Bernard • V. Fischer An illustration of a new certification approach for TRN

Statistical model of a TRNG

Requirement 5

A statistical model of the TRNG should be available and should use the probability distribution $\mathbb{P}(\varphi(t)|p_1, p_2, \cdots, p_n, \varphi(t_0))$.

In the case of a PLL-based TRNG

A X_i random variable with values in $\{0, 1\}$

▶ logical level of the sampled bit at time *i*T_{clk}.

& Probability to sample bit 1 at $i \times T_{clk}^{a}$

$$\mathbb{P}\big(X_i = 1\big) = \mathbb{P}\left(\varphi_i < \alpha T_{\textit{clj}}\right) - \mathbb{P}\left(\varphi_i < 0\right) + 1 - \mathbb{P}\left(\varphi_i < T_{\textit{clj}}\right).$$

^aF. Bernard, V. Fischer, B. Valtchanov. Mathematical Model of Physical RNGs Based On Coherent Sampling. Tatra Mountains - Mathematical Publications, 2010.

Use of the statistical model of a TRNG Obtaining the best configuration

Requirement 6

From the statistical model of the TRNG, it should be possible to adjust parameters q_1, q_2, \dots, q_m in order to bound the value defined by the bias on the bits that output from the generator.

Physical noise Analog to digital converter

26

Use of the statistical model of a TRNG Obtaining the best configuration

Use of the statistical model of a TRNG Obtaining the best configuration

Requirement 6

From the statistical model of the TRNG, it should be possible to adjust parameters q_1, q_2, \dots, q_m in order to bound the value defined by the bias on the bits that output from the generator.

In the case of a PLL-based TRNG

- Combinatorial optimization
 - heuristic and metaheuristic methods.
- Work still in progress.

27

Use of the statistical model of a TRNG Monitoring the source of entropy

Requirement 7

Some parametric tests should be available

at start-up,

total failure test.

online,

Physical noise Analog to digital converter

27

Use of the statistical model of a TRNG Monitoring the source of entropy

Use of the statistical model of a TRNG Monitoring the source of entropy

Requirement 7

Some parametric tests should be available

at start-up,

total failure test.

online,

A parametric test

Deterministic tests

Requirement 8

There must be tests of deterministic functions that verify proper operation of the functional elements of the TRNG.

E. Noumon Allini • F. Bernard • V. Fischer An illustration of a new certification approach for TRNC

Evaluation process

Feasibility and pertinence of the approach

Higher security level

- Fake into account the source of randomness
 - not only the output or digitized noise.

Illustration of the approach

- Evaluated on the PLL-based TRNG
 - approach valid.
- Evaluated on the RO-based TRNG
 - ▶ by D. Lubicz (DGA), ▶ approach valid.

General process?

🐥 Other hardware ge	enerators		
► TERO,	► STR,	►	

E. Noumon Allini • F. Bernard • V. Fischer An illustration of a new certification approach for TRNG