### Demonstration of the Acoustic Cryptanalysis

#### Tomas Fabsic, Ondrej Gallo, Viliam Hromada

Slovak University of Technology in Bratislava

CryptArchi 2017

A 3 1

## Contents



## 2 Equipment

#### 3 Acoustic leakage during RSA decryption

### The attack

-

## Contents



#### 2 Equipment

3 Acoustic leakage during RSA decryption

#### 4 The attack

- ₹ 🖬 🕨

### About the attack

- We repeated the attack described in: Genkin, D., Shamir, A., Tromer, E. (2014). *RSA key extraction via low-bandwidth acoustic cryptanalysis.*
- Source of the exploited acoustic signal: coils and capacitors within the laptop's voltage regulator.

## Contents





3 Acoustic leakage during RSA decryption

#### 4 The attack

< ∃ →



<ロ> <同> <同> < 同> < 同>

æ

## Attacked laptop

- The type of laptop matters, not every laptop can be attacked.
- We used Lenovo ThinkPad T61 laptop.
- The laptop ran the RSA implementation from GnuPG 1.4.14..

. . . . . .

# Microphone

- Needs to be sensitive above acoustic spectrum. (40kHz in case of our laptop)
- We used equipment from Bruel&Kjaer:
  - microphone 4190
  - preamplifier 2669
  - amplifier and power supply 5935

- A - B - M

# Computer for signal analysis

- A personal computer for analysis of the recorded acoustic signal.
- Contained the baudline signal analysis tool (freeware).

- - E - - E

## Contents



### 2 Equipment

#### 3 Acoustic leakage during RSA decryption

#### 4 The attack

< ∃ →

# RSA decryption in GnuPG 1.4.14.

- Uses the Chinese remainder theorem:
  - Firstly  $y^d \mod p$  is computed.
  - Afterwards  $y^d \mod q$  is computed.
- How does the frequency spectrum of the acoustic signal during decryption look like?



э

3

# Contents



### 2 Equipment

3 Acoustic leakage during RSA decryption

## 4 The attack

< ∃ >

- There is a relationship between position of lines in the spectrogram and the value of the secret primes.
- This can be exploited to reveal the value of the secret primes.

4 3 b

- We can do an adaptive chosen ciphertext attack.
- We reveal the value of the secret prime q bit by bit.
- We know the length of q.
- We know q starts with 1.

A 3 b

To reveal the second bit of q we:

- Make the laptop decrypt the ciphertext
  y = 1011 1111 1111 1111 1111 ..., where y has the same length as q.
- The decryption algorithm firstly computes  $c = y \mod q$  and exponentiates c instead of y.
- In case the second bit of q is 0, c has a "random looking" structure ⇒ ordinary pattern in the spectrogram.
- In case the second bit of q is 1, c has a "very special" structure ⇒ strange pattern in the spectrogram.
- Observing the spectrogram, we can detect scenario occurred and determine the value of the second bit.

After learning the second bit, we construct a new ciphertext to reveal the third bit in the same fashion...

#### Spectrogram when the second bit is 0:



#### Spectrogram when the second bit is 1:





#### Thank you for your attention!

э

A 10

→ 3 → 4 3