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Lattice-based cryptography

A lattice L is a discrete set of points in the space Rn with
periodic structure. Foundations problems are Shortest Vector
Problem and Closest Vector Problem
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Simple intuition for a crypto system
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Lattice-based schemes

Bliss (Signature scheme)
Bliss-B (Signature scheme)
NTRU (Encryption scheme)
RLWE (Encryption scheme)
New Hope (Key exchange protocol)
YASHE (Homomorphic encryption)
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Physical attacks

Timing analysis
Power analysis
Fault attacks
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NIST requires side channel resistance

"Schemes that can be made resistant to side-channel attack at
minimal cost are more desirable than those whose performance
is severely hampered by any attempt to resist side-channel
attacks"

1http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-
proposals-final-dec-2016.pdf
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Learning With Errors (LWE)

Find s ∈ ZN
Q , given A =

 : :
a1 . . . am
: :

; bt = stA+ e

LWE problem is equivalent to lattices problems

Andrés Felipe Valencia June 20, 2017, CryptArchi, 2017 P. 7



Learning With Errors (LWE)

Find s ∈ ZN
Q , given A =

 : :
a1 . . . am
: :

; bt = stA+ e

Andrés Felipe Valencia June 20, 2017, CryptArchi, 2017 P. 8



Ring definition

Z=set of integers
ZQ =set of integers module q
ZN

Q =set of vectors of size n where every component is in ZQ

RQ = ZN
Q/(x

N + 1)=Ring of vectors in ZN
Q module (xN + 1)
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Ring Learning With Errors (RLWE)

Find s ∈ ZN
Q , given A =

 : :
a1 . . . am
: :

; bt = stA+ e

We moved from standard lattices to lattices in a ring
Then the matrix A becomes a vector
Key size is reduced
Performance is improved (By using more mathematical tools)
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Definition

RLWE (Ring Learning With Errors) encryption is a cryptosystem
based on the Learning With Errors problem on Ring. It is
parameterized by the length N , an integer Q and a distribution with
variance σ
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RLWE – Key generation
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Number Theoretic Transform (NTT)

The Number Theoretic Transform is a Fourier transform
performed in a ring instead of C

It speed up the RLWE encryption because it allows to perform
the polynomial multiplication with complexity O(n log n)

It requires to make N a power of 2, and Q = 1 mod 2 ∗N a
prime
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NTT algorithm

Require: Vector x of N components
1: function NTT (x)
2: A← Bitreverse(a)
3: for m=2 to N by m=2*m do
4: ω = ω

n/m
n ;ω = 1;

5: for j=0 to m/2 -1 do
6: for k=0 to N-1 by m do
7: t = ω ∗X[k + j +m/2]; u = X[k + j];
8: X[k + j] = u+ t; X[k + j +m/2] = u− t;
9: end for
10: end for
11: end for
12: return Vector X of N components
13: end function
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RLWE – NTT procedure

W j
N = J-th power of the N-th primitive root of unity

x vector in time domain
X vector in NTT domain
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RLWE – Encryption
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RLWE – Encryption

1: function Encode(m)
2: m̄← m· bQ/2c
3: return m̄
4: end function
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RLWE – Decryption

1: function Decode(p)

2: m =

{
1 p ∈

[
bQ
4
c, b3∗Q

4
c
)

0 otherwise
3: return m
4: end function
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Approach 1

Take advantange of the linearity of multiplication and INTT
operation

Divide the key in two random shares to avoid correlation
between intermediate values and the key

The decode function is not linear and it has to be modified

Area increases around 17% (FPGA synthesis)

Maximum frequency is reduce in 20% (FPGA synthesis)

2https://eprint.iacr.org/2015/724.pdf
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Masked decoder

sk = sk′ + sk′′ (1)

m← Decode(INTT (c1· sk) + c2) (2)

INTT (c1· sk + c2) = INTT (c1· sk′ + c2) + INTT (c1· sk′′) (3)

m = m′ +m′′ (4)

2https://eprint.iacr.org/2015/724.pdf
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Masked Decoder

2https://eprint.iacr.org/2015/724.pdf
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Approach 2

Use the homomorphic addition property of RLWE encryption

It avoids the modification in the decoder

It needs an encryption step in the decryption phase, and
encryption is 2.8 times slower than the decryption

Decryption failure rate increases

3https://www.esat.kuleuven.be/cosic/publications/article-2633.pdf
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Working principle

Given Decryption(c1, c2) = (m) and
Decryption(c′1, c

′
2) = (m′) then

Decryption(c1 + c′1, c2 + c′2) = m⊕m′

In the decoding phase a random message m′ is generated and
encrypted in (c′1, c

′
2)

Then Decryption(c1 + c′1, c2 + c′2) is performed.

The output is (m′,m⊕m′)
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Approach 3

Use the principle of dividing on shares the vulnerables variables

Implement the Fujisaki-Okamoto tranformation (Targhi-Unruh
variant) to achived CCA2 protection

It needs an encryption step in the decryption phase

The decryption in around 5 times slower than in the
unprotected version

4https://eprint.iacr.org/2016/1109.pdf
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Encryption phase for RLWE-CCA2

4https://eprint.iacr.org/2016/1109.pdf
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Decryption phase for RLWE-CCA2

4https://eprint.iacr.org/2016/1109.pdf
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Sort of comparison

Approach 1 LUTs/FFs/DSPs Cycles/Time( µs)
Unprotected 1713 / 830 / 1 2.8k / 23.5
Protected 2014 / 959 / 1 7.5k/75.2

Cycle count Dynamic memory Platform
Approach 1 2,070,952 15,284 bytes Virtex-II FPGA
Approach 2 3,661,431 15,412 bytes ARM Cortex-M4
Approach 3 2,931,411 19,380 bytes Cortex-M4F

4https://eprint.iacr.org/2016/1109.pdf
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Learned leason

RLWE can be masked splitting the key and using the linearity
of NTT domain

Intermediate values can be hidden using the homomorphic
addition property

Splitting variables in shares can be used for all sensitive values
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Questions

Thank you for your attention
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