Dynamic Reconfiguration as Countermeasure against DPA

Stanislav Jeřábek

Czech Technical University in Prague Faculty of Information Technology, Department of Digital Design

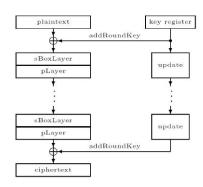
Contents

- Introduction
 - Reliability vs. Security
- 2 Dynamic reconfiguration
 - Present cypher
 - Reconfigurable S-box
- Perspectives
 - Other techniques
 - FPGA low-level approach

Reliability vs. Security

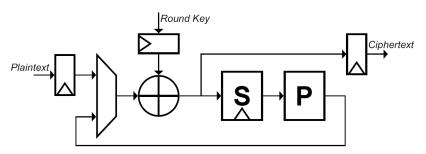
Reliability

- Area or Time redundancy
- Generally worse security

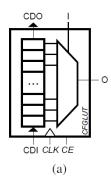

Security

- Masking or another computation
- More faults possible

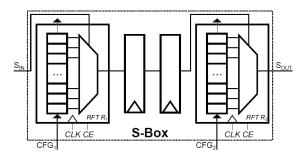
Present cypher


- Ultra-Lightweight cipher
- Block-cipher (64 bits)
- 80/128 bit key
- 32 rounds

Countermeasure possibilities


- Masking
- Threshold implementation

S-box splitting

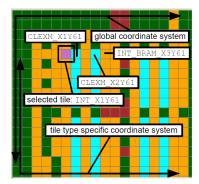

- Built-in CFGLUT
- Random reconfiguration
- Two entities
- Same function

DPA development board

- Artix-7 FPGA
- Threshold implementation

Other techniques

- 0/1 computations in parallel
- Another masking or threshold implementations


Preserving reliability

Place & route knowledge

FPGA structure

- Pretty unknown
- Existing toolchains
- XDL format
- TORC

TORC

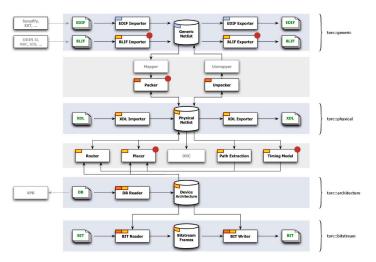


Figure 1: Torc block diagram. Red dots indicate components still under development.

Thank you for your attention!