
CryptArchi 2018 
18-19 June 2018 | Guiden, France 

1 | P a g e  

Addressable PUF Generators for Database-free Password Management System  

Bertrand Cambou 
School of Informatics, Computing and Cyber Systems 

Northern Arizona University 
Flagstaff, AZ 

Bertrand.cambou@nau.edu 
 
 

 
 

Abstract — The objective of our research effort is to mitigate 
a prevalent attack on Cyber Physical Systems: the hacking of 
databases of UserID-Password pairs. We developed a database-
free password generator architecture based on memory arrays, 
and Addressable Physical unclonable function (PUF) Generator 
(APG). APGs can generate passwords, and can authenticate a 
client on the network without keeping in memory UserID-
Password pairs.    
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I. INTRODUCTION:  
One of the most commonly reported cyber-attacks is the 

compromising of extremely large databases of User ID and 
password pairs. Recent events reported in the news include 
hackers stealing information by getting un-authorized access to 
databases within internet providers, US government agencies, 
the IRS, health institutions, political parties, banks, and many 
more. These types of cyber-attacks could create huge financial 
damages or psychological traumas. The essence of access 
control is to match a password, secret key, biometric print, or 
any other reference pattern that is associated with a particular 
user or peripheral against the same reference pattern that is 
stored in the secure host server. The vulnerability of the 
databases of reference patterns is a major threat. We are 
presenting the development of access control architectures that 
do not require the existence of a centralized database of 
reference patterns and passwords, thereby removing the risks 
related to stolen databases. The proposed architectures reuse 
known technology modules, such as memory based PUFs, true 
random number generators, hash functions, and public key 
infrastructure. We designed several prototypes to test the 
proposed schemes. 

II. BACKGROUND INFORMATION 
Public key infrastructure (PKI) is a method introduced in 

the 80’s by Merkle, Hellman, and Diffie [1-3], see Fig. 1. Each 
user has a pair of keys, the public key that is not secret, and the 
highly secret private key. These two keys are interchangeably 
used to encrypt a message, while the second key is the only one 
capable of decrypting the message. RSA and elliptic curves 
(EC) are two widely used examples of PKI-based algorithms. 
After distribution of the secret key, as shown in Fig. 1, the 
protocol of communication between the secure server and the 
secure memories embedded in each IoT node is trustworthy. A 

loss to a hacker of the database of public keys is irrelevant 
because this data base is indeed “public”.  

 
Figure 1: Block diagram of PKI protocol 

This protocol has several weaknesses for a network that 
integrates IoT devices; the first issue is that the secure 
memories in IoTs are not always immune to side channel 
attacks and therefore there is a chance for private key leakage; 
secondly, the overall key distribution is a challenging task, and 
can be risky. The loss of the private key is considered a total 
loss of the trust of the security protocol. If a node of the 
network is compromised, the distribution of a new key to the 
corresponding node is difficult. 

Physically Unclonable Functions (PUFs) can generate 
from hardware components the equivalent of human 
fingerprints; they are unclonable, and random. PUFs are low 
cost, and can strengthen the level of security of authentication 
protocols as part of a set of cryptographic primitives. PUFs 
exploit the intrinsic natural manufacturing variations 
introduced during fabrication of the devices such as local 
variations in critical dimensions, doping levels of 
semiconducting layers, and threshold voltages [4-10]. These 
variations make each device authenticable from each other. 
The underlying mechanism of PUF is the creation of a large 
number of Challenge (i.e. Input) Response (i.e. output) Pairs 
(called CRPs). Once deployed during the authentication cycles, 
the PUFs are queried with challenges. The authentication is 
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granted when the rate of matching CRPs is statistically high 
enough (above a predefined threshold). A PKI protocol, which 
uses a set of distributed PUFs for access control, is shown in 
Fig. 2 [11].  

 
Figure 2: Block diagram of PKI protocol with distributed PUF 

Each user (client) is associated with its own PUF, which 
has to generate upfront a challenge that is stored under the 
control of the secure server, in the central database as reference 
pattern. Such a protocol enhance the security of PKI’s, 
however the centralized database which keeps track of the 
challenges of the distributed PUFs is vulnerable, and must be 
protected [12-13], and need error correction methods [14]. 

Memory based PUF: Memory structures [15-17], SRAM 
[18-19], DRAM [20], Flash [21], ReRAM [22], and MRAM 
[23-24], are excellent elements to generate PUFs.  Usually 
PUFs need only 128 to 256 bits to ensure an acceptable level 
of security, while commercial secure memory arrays (SM), 
which are integrated within secure micro-controllers, 
ordinarily have memory densities in the mega-byte range. One 
of the generic methods to generate CRPs is to characterize a 
particular parameter 𝒫𝒫 of the cells of the array with a built-in-
self-test (BIST) module [25]. The values of parameter 𝒫𝒫 vary 
cell to cell, and follow a distribution with a median value T. In 
order to generate challenge and response pairs, all cells with 𝒫𝒫 
< T can be quantified as “0”, and all others as “1”. Assuming 
that these measurements are reproducible, the resulting 
streams of data can be used as cryptographic primitives to 
authenticate the memory array. 

/////We implemented a server-client TAPKI scheme on a 
PC environment. The algorithms for public-private key 
exchange are described in this section. 

III. ADDRESSABLE DATABASES 
3.1 Hashing the passwords 

Hash functions can be used to replace the tables containing 
User IDs with their corresponding passwords by look up tables, 
as shown in the block diagram of Fig.3. The hashing of the 
password “PWJ” results in the first message digest h(PWJ); the 
user ID “UserJ” and “PWJ” are XORed; the hashing of “

UserJ⊕PWJ” results in the second message digest h(UserJ⊕
PWJ). The second message digest generates the coordinate XY 
of the look up table storing the first message digest.  

 
Figure 3: Block diagram describing the data flow for authentication 

In the example presented in Fig.4, the user#1 has a user ID 
“a6c26”, a password “12ae5”, and a first message digest 
“a639” generated with SHA-1; only the first five characters of 
the message digest are kept. The XORing the first three 
hexadecimal characters of the user ID and the password has a 
value of “b86”. The hashing of “b86” with SHA-1 is 
generating a message digest that has “3e” as first two 
hexadecimal characters.  

 
Figure 4: Example of conversion of password with SHA-1 hashing function. 

As shown in Fig.5, we are then placing “a639” in the 
address “3e” of the table. Five more UserID/password pairs are 
stored in a similar way in the bottom right look up table of 
Fig.5. Such a method is applicable to store very large quantities 
of UserID/Password pairs. During authentication cycles, the 
users provide their UserID/Password pair; the information 
extracted from the table at the corresponding address is then 
compared with the message digest provided by the password. 
When SHA-1 is replaced by more powerful hashing functions 
(ex: SHA-3), such look up tables are much more secure than 
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the tables directly storing UserID/Password pairs. However, 
when look up tables storing message digests are lost to the 
enemy, the information can be lost overtime with big data 
analysis, and hashing of commonly used passwords. 

 
Figure 5: Example of look up table with 6 SHA-1 message digests 

 replacing 5 passwords. 

3.2 Addressable memory arrays 

We are proposing an architecture based on memory 
arrays to generate one-time-use UserID/Password pairs that 
are only stored by the client devices, and allowing one-time 
authentication, see Fig 6.   

 
Password Generation: The server generate a random 

number RN that generates an address XY to the memory array 
through the hash function. The hash generates fixed size data 
streams that have fixed output length regardless of the size of 
input. They are “image resistant”, i.e. any small change in the 
input creates a new hash digest that is totally different from 
the original digest, and “collision resistant”, i.e. the probability 
that two different inputs to create the same output is extremely 
low. The hash message digest points to an address XY in the 
memory array. The password consists of the random number 
generated by the server, and the encrypted stream extracted at 
the address pointed by this random number, see Fig 6. 

 

 
Figure 6: Example of password generation with memory array. 

Authentication: A scheme similar to the one used for 
password generation is shown Fig.7. For positive 
authentication, the stream extracted from the memory should 
be the same as the stream of the password. With hash 
functions, the probability of having two users at the same 
location, the “collision”, is minuscule but not necessarily zero, 
which is acceptable because a few User IDs can occasionally 
share the same password. A new random number, and a 
therefore a new password can be generated at each cycle. 
 

If we assume that the size of the memory array is 216 
x216 , a capacity of 4Gb, a message digest of SHA-3 
containing 512 bits can point to 16 different addresses in the 
array, each defined by 32 bits. If streams of 512 bits are 
needed for the password, it is possible to extract 32 bits at 
each of the 16 addresses pointed by the message digest. This 
protocol is more secure than the protocol described above in 
section 3.1. 
 

 
Figure 7: Example of authentication with memory array. 

3.3 Addressable memory arrays with ternary states 

We developed a prototype demonstrating the addressable 
memory scheme of section 3.2 with a window 10 PC driving 
javacard based secure elements [26]. To enhance entropy we 
stored three states (-, 0, +) in the memory, with the three states 
respectively represented by (01), (00), and (10).  

 
In Fig.8, we are showing a graphic representation of the 

extraction of the data streams from the memory. The UserID 
is XORed with a random number. The resulting stream is 
feeding a SHA-2 hashing function. The resulting message 
digest is pointing to 32 different addresses. 16 consecutive  
trits are extracted at each address to form a stream of 512 
trits.The stream of trits is then converted to an hexadecimal 
character to generate the password. We developed variations 
of this scheme to enhance entropy. For example [26], we 
implemented methods to extracts non-consecutive trits at each 
address that is adjustable when the same address is solicited 
more than once. 
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Figure 8: Example of addressing with a memory containing ternary state

3.4 Addressable PUF generators (APG) 

The risks associated with the loss of the content of the 
memory array to the enemy are not negligible. A third party 
knowing the content of the memory could be able to 
communicate freely with the network of client devices. To 
mitigate this type of attack, we developed an addressable PUF 
generator; see the block diagram in Fig. 9. Two distinct 
operating modes of the APG are important: password 
generation based on PUF challenge generation, and 
authentication based on PUF response generation. Unlike a 
random access memory (RAM) where bits are stored at each 
cells, a PUFs is based on the analog reading of the cells. This 
reading varies with the conditions of the read (the 
instructions), and the relative value of the parameters within 
the multiple cells that are selected at a particular address. 
Therefore, as particular cell could be a “0” when part of one 
group of cell, and a “1” when part of a different group, or 
when read with different instructions. An hostile party cannot 
simply read the entire PUF array, and use the reading to 
communicate with a network of client devices. The cloning of 
the entire array would be a security threat, however, the level 
of randomness of such a component is so high that this type of 
attack is highly unlikely. The use of ternary PUFs to reduce 
the challenge-response-pair (CRP) error rates [27-29]. During 

challenge generation three types of cells are identified: the 
cells that are clearly “0” or “1” in a consistent manner, and the 
cells that are unstable, switching randomly between “0” 
and“1”. During response generation, the unstable cells are 
masked; the CRP error rate of the remaining cells is very low. 
We this method, we previously reported CRP error rates in the 
part per million range (ppm), with TaO based Resistive RAM 
cells [27].table when the same address is solicited more than 
once. 

 
Figure 9: Block diagram of an addressable PUF generator (APG). 
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     3.5 Bandwidth enhancement & cryptographic protocol 
 

The suggested architecture to increase the bandwidth of the 
architecture is shown in Fig.10. In this architecture, a router, 
with an X-Y demux circuitry, drives an array of Host/APG 
subsystems, as described in Fig 9.  

 
Figure 10: High bandwidth architecture with router. 

The router directs the User ID – PW pair to a particular 
Host/APG system based on the first character of the User ID. 
For example, if the User ID is starting with a “C”, the User 
ID/PW pair is routed to the third column, and first row of the 
networked array. This architecture is scalable to large numbers 
of systems, with bandwidth increasing proportionally with the 
number of Host/APG sub-systems. The router used in this 
design can be similar to routers that connecting millions of 
users in wired telecommunication applications handling IP 
addresses. 

 
 Fig. 11 depicts how a PKI protocol similar to the one 

presented Fig 1 can incorporate APG for authentication. The 
transfer of passwords between the clients and the host is 
encrypted with public keys, thereby reducing the risks of 
being hacked while exposed during the communication. 

 

 
Figure 11: PKI cryptographic protocol with APG 

 

CONCLUSION 
We presented how arrays of addressable PUFs are used to 

design database-free Password Management Systems. Hash 
functions convert userID’s and TRNG’s into addresses 
generating CRPs for password generation and authentication. 
Since hash functions are one-way functions, it is impossible to 
deduce the input of the hash function by looking at the address 
of a PUF array. Unlike traditional data storage units, the 
memory arrays used in the APG do not store information; a 
crypto-analyst cannot extract CRPs from these PUFs without 
knowing the necessary instructions. The masking of the 
unstable cells with ternary states increases the quality of the 
PUF, and reduces the CRP error rates: only the cells with solid 
“0” and “1” tested during challenge generation are kept to 
generate PUF responses. To counter the replay attack, each 
password is used only once, and this leveraging the ease to 
generate new passwords from the APG. We are integrating this 
architecture with PKI to protect the communication between 
the host server, and the client devices. 
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