
CryptArchi 2018
18-19 June 2018 | Guiden, France

1 | P a g e

Addressable PUF Generators for Database-free Password Management System

Bertrand Cambou
School of Informatics, Computing and Cyber Systems

Northern Arizona University
Flagstaff, AZ

Bertrand.cambou@nau.edu

Abstract — The objective of our research effort is to mitigate
a prevalent attack on Cyber Physical Systems: the hacking of
databases of UserID-Password pairs. We developed a database-
free password generator architecture based on memory arrays,
and Addressable Physical unclonable function (PUF) Generator
(APG). APGs can generate passwords, and can authenticate a
client on the network without keeping in memory UserID-
Password pairs.

Keywords — Hardware Authentication, Password management,
Memory arrays, Hash functions, Public Key Infrastructure,
Physically Unclonable Functions, Ternary states.

I. INTRODUCTION:
One of the most commonly reported cyber-attacks is the

compromising of extremely large databases of User ID and
password pairs. Recent events reported in the news include
hackers stealing information by getting un-authorized access to
databases within internet providers, US government agencies,
the IRS, health institutions, political parties, banks, and many
more. These types of cyber-attacks could create huge financial
damages or psychological traumas. The essence of access
control is to match a password, secret key, biometric print, or
any other reference pattern that is associated with a particular
user or peripheral against the same reference pattern that is
stored in the secure host server. The vulnerability of the
databases of reference patterns is a major threat. We are
presenting the development of access control architectures that
do not require the existence of a centralized database of
reference patterns and passwords, thereby removing the risks
related to stolen databases. The proposed architectures reuse
known technology modules, such as memory based PUFs, true
random number generators, hash functions, and public key
infrastructure. We designed several prototypes to test the
proposed schemes.

II. BACKGROUND INFORMATION
Public key infrastructure (PKI) is a method introduced in

the 80’s by Merkle, Hellman, and Diffie [1-3], see Fig. 1. Each
user has a pair of keys, the public key that is not secret, and the
highly secret private key. These two keys are interchangeably
used to encrypt a message, while the second key is the only one
capable of decrypting the message. RSA and elliptic curves
(EC) are two widely used examples of PKI-based algorithms.
After distribution of the secret key, as shown in Fig. 1, the
protocol of communication between the secure server and the
secure memories embedded in each IoT node is trustworthy. A

loss to a hacker of the database of public keys is irrelevant
because this data base is indeed “public”.

Figure 1: Block diagram of PKI protocol

This protocol has several weaknesses for a network that
integrates IoT devices; the first issue is that the secure
memories in IoTs are not always immune to side channel
attacks and therefore there is a chance for private key leakage;
secondly, the overall key distribution is a challenging task, and
can be risky. The loss of the private key is considered a total
loss of the trust of the security protocol. If a node of the
network is compromised, the distribution of a new key to the
corresponding node is difficult.

Physically Unclonable Functions (PUFs) can generate
from hardware components the equivalent of human
fingerprints; they are unclonable, and random. PUFs are low
cost, and can strengthen the level of security of authentication
protocols as part of a set of cryptographic primitives. PUFs
exploit the intrinsic natural manufacturing variations
introduced during fabrication of the devices such as local
variations in critical dimensions, doping levels of
semiconducting layers, and threshold voltages [4-10]. These
variations make each device authenticable from each other.
The underlying mechanism of PUF is the creation of a large
number of Challenge (i.e. Input) Response (i.e. output) Pairs
(called CRPs). Once deployed during the authentication cycles,
the PUFs are queried with challenges. The authentication is

mailto:Bertrand.cambou@nau.edu

CryptArchi 2018
18-19 June 2018 | Guiden, France

2 | P a g e

granted when the rate of matching CRPs is statistically high
enough (above a predefined threshold). A PKI protocol, which
uses a set of distributed PUFs for access control, is shown in
Fig. 2 [11].

Figure 2: Block diagram of PKI protocol with distributed PUF

Each user (client) is associated with its own PUF, which
has to generate upfront a challenge that is stored under the
control of the secure server, in the central database as reference
pattern. Such a protocol enhance the security of PKI’s,
however the centralized database which keeps track of the
challenges of the distributed PUFs is vulnerable, and must be
protected [12-13], and need error correction methods [14].

Memory based PUF: Memory structures [15-17], SRAM
[18-19], DRAM [20], Flash [21], ReRAM [22], and MRAM
[23-24], are excellent elements to generate PUFs. Usually
PUFs need only 128 to 256 bits to ensure an acceptable level
of security, while commercial secure memory arrays (SM),
which are integrated within secure micro-controllers,
ordinarily have memory densities in the mega-byte range. One
of the generic methods to generate CRPs is to characterize a
particular parameter 𝒫𝒫 of the cells of the array with a built-in-
self-test (BIST) module [25]. The values of parameter 𝒫𝒫 vary
cell to cell, and follow a distribution with a median value T. In
order to generate challenge and response pairs, all cells with 𝒫𝒫
< T can be quantified as “0”, and all others as “1”. Assuming
that these measurements are reproducible, the resulting
streams of data can be used as cryptographic primitives to
authenticate the memory array.

/////We implemented a server-client TAPKI scheme on a
PC environment. The algorithms for public-private key
exchange are described in this section.

III. ADDRESSABLE DATABASES
3.1 Hashing the passwords

Hash functions can be used to replace the tables containing
User IDs with their corresponding passwords by look up tables,
as shown in the block diagram of Fig.3. The hashing of the
password “PWJ” results in the first message digest h(PWJ); the
user ID “UserJ” and “PWJ” are XORed; the hashing of “

UserJ⊕PWJ” results in the second message digest h(UserJ⊕
PWJ). The second message digest generates the coordinate XY
of the look up table storing the first message digest.

Figure 3: Block diagram describing the data flow for authentication

In the example presented in Fig.4, the user#1 has a user ID
“a6c26”, a password “12ae5”, and a first message digest
“a639” generated with SHA-1; only the first five characters of
the message digest are kept. The XORing the first three
hexadecimal characters of the user ID and the password has a
value of “b86”. The hashing of “b86” with SHA-1 is
generating a message digest that has “3e” as first two
hexadecimal characters.

Figure 4: Example of conversion of password with SHA-1 hashing function.

As shown in Fig.5, we are then placing “a639” in the
address “3e” of the table. Five more UserID/password pairs are
stored in a similar way in the bottom right look up table of
Fig.5. Such a method is applicable to store very large quantities
of UserID/Password pairs. During authentication cycles, the
users provide their UserID/Password pair; the information
extracted from the table at the corresponding address is then
compared with the message digest provided by the password.
When SHA-1 is replaced by more powerful hashing functions
(ex: SHA-3), such look up tables are much more secure than

CryptArchi 2018
18-19 June 2018 | Guiden, France

3 | P a g e

the tables directly storing UserID/Password pairs. However,
when look up tables storing message digests are lost to the
enemy, the information can be lost overtime with big data
analysis, and hashing of commonly used passwords.

Figure 5: Example of look up table with 6 SHA-1 message digests

 replacing 5 passwords.

3.2 Addressable memory arrays

We are proposing an architecture based on memory
arrays to generate one-time-use UserID/Password pairs that
are only stored by the client devices, and allowing one-time
authentication, see Fig 6.

Password Generation: The server generate a random

number RN that generates an address XY to the memory array
through the hash function. The hash generates fixed size data
streams that have fixed output length regardless of the size of
input. They are “image resistant”, i.e. any small change in the
input creates a new hash digest that is totally different from
the original digest, and “collision resistant”, i.e. the probability
that two different inputs to create the same output is extremely
low. The hash message digest points to an address XY in the
memory array. The password consists of the random number
generated by the server, and the encrypted stream extracted at
the address pointed by this random number, see Fig 6.

Figure 6: Example of password generation with memory array.

Authentication: A scheme similar to the one used for
password generation is shown Fig.7. For positive
authentication, the stream extracted from the memory should
be the same as the stream of the password. With hash
functions, the probability of having two users at the same
location, the “collision”, is minuscule but not necessarily zero,
which is acceptable because a few User IDs can occasionally
share the same password. A new random number, and a
therefore a new password can be generated at each cycle.

If we assume that the size of the memory array is 216
x216 , a capacity of 4Gb, a message digest of SHA-3
containing 512 bits can point to 16 different addresses in the
array, each defined by 32 bits. If streams of 512 bits are
needed for the password, it is possible to extract 32 bits at
each of the 16 addresses pointed by the message digest. This
protocol is more secure than the protocol described above in
section 3.1.

Figure 7: Example of authentication with memory array.

3.3 Addressable memory arrays with ternary states

We developed a prototype demonstrating the addressable
memory scheme of section 3.2 with a window 10 PC driving
javacard based secure elements [26]. To enhance entropy we
stored three states (-, 0, +) in the memory, with the three states
respectively represented by (01), (00), and (10).

In Fig.8, we are showing a graphic representation of the

extraction of the data streams from the memory. The UserID
is XORed with a random number. The resulting stream is
feeding a SHA-2 hashing function. The resulting message
digest is pointing to 32 different addresses. 16 consecutive
trits are extracted at each address to form a stream of 512
trits.The stream of trits is then converted to an hexadecimal
character to generate the password. We developed variations
of this scheme to enhance entropy. For example [26], we
implemented methods to extracts non-consecutive trits at each
address that is adjustable when the same address is solicited
more than once.

CryptArchi 2018
18-19 June 2018 | Guiden, France

4 | P a g e

Figure 8: Example of addressing with a memory containing ternary state

3.4 Addressable PUF generators (APG)

The risks associated with the loss of the content of the
memory array to the enemy are not negligible. A third party
knowing the content of the memory could be able to
communicate freely with the network of client devices. To
mitigate this type of attack, we developed an addressable PUF
generator; see the block diagram in Fig. 9. Two distinct
operating modes of the APG are important: password
generation based on PUF challenge generation, and
authentication based on PUF response generation. Unlike a
random access memory (RAM) where bits are stored at each
cells, a PUFs is based on the analog reading of the cells. This
reading varies with the conditions of the read (the
instructions), and the relative value of the parameters within
the multiple cells that are selected at a particular address.
Therefore, as particular cell could be a “0” when part of one
group of cell, and a “1” when part of a different group, or
when read with different instructions. An hostile party cannot
simply read the entire PUF array, and use the reading to
communicate with a network of client devices. The cloning of
the entire array would be a security threat, however, the level
of randomness of such a component is so high that this type of
attack is highly unlikely. The use of ternary PUFs to reduce
the challenge-response-pair (CRP) error rates [27-29]. During

challenge generation three types of cells are identified: the
cells that are clearly “0” or “1” in a consistent manner, and the
cells that are unstable, switching randomly between “0”
and“1”. During response generation, the unstable cells are
masked; the CRP error rate of the remaining cells is very low.
We this method, we previously reported CRP error rates in the
part per million range (ppm), with TaO based Resistive RAM
cells [27].table when the same address is solicited more than
once.

Figure 9: Block diagram of an addressable PUF generator (APG).

CryptArchi 2018
18-19 June 2018 | Guiden, France

5 | P a g e

 3.5 Bandwidth enhancement & cryptographic protocol

The suggested architecture to increase the bandwidth of the
architecture is shown in Fig.10. In this architecture, a router,
with an X-Y demux circuitry, drives an array of Host/APG
subsystems, as described in Fig 9.

Figure 10: High bandwidth architecture with router.

The router directs the User ID – PW pair to a particular
Host/APG system based on the first character of the User ID.
For example, if the User ID is starting with a “C”, the User
ID/PW pair is routed to the third column, and first row of the
networked array. This architecture is scalable to large numbers
of systems, with bandwidth increasing proportionally with the
number of Host/APG sub-systems. The router used in this
design can be similar to routers that connecting millions of
users in wired telecommunication applications handling IP
addresses.

 Fig. 11 depicts how a PKI protocol similar to the one

presented Fig 1 can incorporate APG for authentication. The
transfer of passwords between the clients and the host is
encrypted with public keys, thereby reducing the risks of
being hacked while exposed during the communication.

Figure 11: PKI cryptographic protocol with APG

CONCLUSION
We presented how arrays of addressable PUFs are used to

design database-free Password Management Systems. Hash
functions convert userID’s and TRNG’s into addresses
generating CRPs for password generation and authentication.
Since hash functions are one-way functions, it is impossible to
deduce the input of the hash function by looking at the address
of a PUF array. Unlike traditional data storage units, the
memory arrays used in the APG do not store information; a
crypto-analyst cannot extract CRPs from these PUFs without
knowing the necessary instructions. The masking of the
unstable cells with ternary states increases the quality of the
PUF, and reduces the CRP error rates: only the cells with solid
“0” and “1” tested during challenge generation are kept to
generate PUF responses. To counter the replay attack, each
password is used only once, and this leveraging the ease to
generate new passwords from the APG. We are integrating this
architecture with PKI to protect the communication between
the host server, and the client devices.

AKNOWLEDGMENT
We are thanking the students and faculty from Northern

Arizona University, in particular Christopher Philabaum,
Duane Booher, and Sareh Assiri. We are also thanking Dr. Don
Telesca from the Air Force Research lab of Rome, NY.

REFERENCES
[1] C. Paar, J. Pezl; Understanding Cryptography- A text book for students

and practitioners; Spinger editions, 2011;
[2] H.X. Mel, D. Baker; Cryptography Decrypted; Addison-Wesley

editions, 2001;
[3] C. P. Pfleeger, and al; Security in Computing; Fifth edition; Prentice

Hall editions, 2015;
[4] Y. Jin; Introduction to hardware security; Electronics 2015, 4, 763-784;

doi:10.3390/electronics4040763;
[5] Z. Gong, M. X. Makkes; Hardware Trojan Side-Channels Based on

PUF; Information Security, Volume 6633, Notes in Computer Science
pp 294-303; 2011;

[6] D. Naccache and P. Frémanteau; Unforgeable identification device,
identification device reader and method of identification; Patent
US5434917; Aug. 1992;

[7] M. Delavor, and all; PUF based solution for secure communication in
advanced metering infrastructure; ACR publication, 2014;

[8] C. Herder and all; Physical Unclonable Functions and Applications; A
Tutorial; Proceedings of the IEEE 102, no. 8 (2014);

[9] R. Pappu, B. Recht, J. Taylor, and N. Gershenfield; Physical one-way
functions; Science. Vol 297 No5589 pp2026-2030; 20 Sept 2002;

[10] B. Gassend, and all; Silicon Physical Randomness; Proceedings of the
9th ACM conference on Computer and communications security, Pages
148-160, CCS’2002;

[11] B.Cambou, P. Flikkema, and C. Ciocanel; Securing UAVs; IEEE
workshop on IoT security, February 2016;

[12] S. Katzenbeisser, and all; PUFs: myths, fact or busted? A security
evaluation of PUFs cast in silicon; CHES 2012;

[13] M. Hiller, M. Weiner, L. Rodrigues, M. Birkner and G. and Sigl;
Breaking through Fixed PUF Block Limitations with DSC and
Convolutional Codes; in TrustED’13, 2013;

CryptArchi 2018
18-19 June 2018 | Guiden, France

6 | P a g e

[14] D. Merli, F. Stumpf, G. Sigl; Protecting PUF Error Correction by
Codeword Masking; IACR Cryptography, e-print archive 2013: 334;
2013;

[15] Y. Gao, and all; Emerging Physical Unclonable Functions with
nanotechnologies; IEEE, DOI:10.1109/ACCESS.2015.2503432;

[16] C. Krutzik; Jan 2015; Solid state drive Physical Unclonable Function
erase verification device and method; US Patent Application publication
US 2015/0007337 A1;

[17] J. Plusquellic, and all; Systems and methods for generating PUF’s from
non-volatile cells; WO20151056887A1; 2015;

[18] D. E. Holcomb, W. P. Burleson, K. Fu; Power-up SRAM state as an
Identifying Fingerprint and Source of TRN; IEEE Trans. on Comp., vol
57, No 11; Nov 2008;

[19] R. Maes, P. Tuyls and I. Verbauwhede,; A Soft Decision Helper Data
Algorithm for SRAM PUFs; IEEE International Symposium on
Information Theory, 2009;

[20] T. A. Christensen, J. E Sheets II; Implementing PUF utilizing EDRAM
memory cell capacitance variation; Patent No.: US 8,300,450 B2; Oct.
30, 2012;

[21] P. Prabhu, A. Akel, L. M. Grupp, W-K S. Yu, G. E. Suh, E. Kan, and S.
Swanson; Extracting Device Fingerprints from Flash Memory by
Exploiting Physical Variations; 4th international conference on Trust
and trustworthy computing; June 2011;

[22] A. Chen; Comprehensive Assessment of RRAM-based PUF for
Hardware Security Applications; 978-1-4673-9894-7/15/IEDM IEEE;
2015;

[23] X. Zhu, S. Millendorf, X. Guo, D. M. Jacobson, K. Lee, S. H. Kang, M.
M. Nowak, D. Fazla; PUFs based on resistivity of MRAM magnetic
tunnel junctions; Patents. US 2015/0071432 A1; March 2015;

[24] E. I. Vatajelu, G. Di Natale, M. Barbareschi, L. Torres, M. Indaco, and
P. Prinetto; STT-MRAM-Based PUF Architecture exploiting Magnetic

Tunnel Junction Fabrication-Induced Variability; ACM trans.; July
2015;

[25] A. Gupta; Implementing Generic BIST for testing Kilo-Bit Memories;
Master Thesis No-6030402 Deemed University Patiala India; May 2005;

[26] B.Cambou, P. Flikkema, J. Palmer, D. Telesca, C. Philabaum; Can
Ternary Computing Improve Information Assurance?, Cryptography,
MDPI, Feb 2018;

[27] B.Cambou, and M. Orlowski; Design of PUFs with ReRAM and ternary
states; CISR 2016, April 2016;

[28] B. Cambou, F. Afghah; Physically Unclonable Functions with Multi-
states and Machine Learning", 14th International Workshop on
Cryptographic Architectures Embedded in Logic Devices (CryptArchi),
France; 2016;

[29] B. Cambou; Physically Unlonable Function generating systems and
related methods; US patent disclosure No: 62/204912; Aug 2015;

[30] Daniel E Holcomb, et al; Power up SRAM state as an identifying
Fingerprint and Source of True Random Numbers; IEEE Trans. On
Computers, 2009 Vol 58, issue No09 Sept;

[31] An. Chen; Comprehensive Assessment of RRAM-based PUF for
Hardware Security Applications; IEDM IEEE; 2015;

[32] N. Beckmann, et al, ‘‘Hardware-based public-key cryptography with
public physically unclonable functions,’’ in Information Hiding. New
York, NY, USA: Springer-Verlag, 2009, pp. 206–220.

[33] B. Habib, J. Kaps and K. Gaj ."Efficient SR-Latch PUF," Proc. ISARC,
2015, Bochum, Germany, April 15-17. 2015.

[34] H. Kang, Y. Hori, T. Katashita, M Hagiwara, and K. Iwamura.
"Cryptographic Key Generation from PUF Data Using Efficient Fuzzy
Extractors," in Proc. ICACT, 2014, pp.23–26.

	I. Introduction:
	II. Background information
	III. Addressable databases
	Conclusion
	Aknowledgment
	References

