Post-Quantum Cryptography in Reconfigurable Hardware: Challenges, Opportunities, & State-of-the-Art

<u>Kris Gaj</u>, Ahmed Ferozpuri, Viet Dang, Duc Nguyen, Farnoud Farahmand, & Jens-Peter Kaps

ECE Department George Mason University

Quantum Computers

- One of ten breakthrough technologies of 2017
- Substantial investments by: Google, IBM, Intel, Microsoft, Alcatel-Lucent, NTT
- Quantum computers based on superconducting circuits operating in the temperature close to absolute 0 (~0.01 K)

- November 2017: IBM's 50-qubit chip
- January 2018: Intel's 49-qubit chip, "Tangle-Lake"
- March 2018: Google's 72-qubit chip "Bristlecone"

What Quantum Computers Can Do?

Health: Quantum chemistry for medicine

Model complex materials

Energy: Room-temperature superconductivity Solve complex math problems

Security: factoring and code breaking

Nobel 2012 citation: "The quantum computer may **change our everyday lives** in this century in the same radical way as the classical computer did in the last century."

Quantum Computers & Cryptography

1994: Shor's Algorithm, breaks major public key cryptosystems based on

Factoring: RSA

Discrete logarithm problem (DLP): DSA, Diffie-Hellman

Elliptic Curve DLP:

Elliptic Curve Cryptosystems

independently of the key size assuming a sufficiently powerful and reliable quantum computer available

How Real Is the Danger?

"There is a 1 in 7 chance that some fundamental public-key crypto will be broken by quantum by 2026, and a 1 in 2 chance of the same by 2031." Dr. Michele Mosca Deputy Director of the Institute for Quantum Computing, University of Waterloo April 2015

Post-Quantum Cryptography (PQC)

- Public-key cryptographic algorithms for which there are no known attacks using quantum computers
 - Capable of being implemented using any traditional methods, including software and hardware
 - Running efficiently on any modern computing platforms: PCs, tablets, smartphones, servers with FPGA accelerators, etc.
- Term introduced by Dan Bernstein in 2003
- Equivalent terms: quantum-proof, quantum-safe or quantum-resistant
- Based entirely on traditional semiconductor VLSI technology!

If z < y + x, then worry!

NIST PQC Standardization Process

- Feb. 2016: NIST announcement of standardization plans at PQCrypto 2016, Fukuoka, Japan
- Dec. 2016: NIST Call for Proposals and Request for Nominations for Public-Key Post-Quantum Cryptographic Algorithms
- Nov. 30, 2017: Deadline for submitting candidates
- Dec. 2017: Announcement of the First Round Candidates
- Apr. 2018: The First NIST PQC Standardization Conference

Three Types of PQC Schemes

Level	Security Description
Ι	At least as hard to break as AES-128 using exhaustive key search
II	At least as hard to break as SHA-256 using collision search
III	At least as hard to break as AES-192 using exhaustive key search
IV	At least as hard to break as SHA-384 using collision search
V	At least as hard to break as AES-256 using exhaustive key search

Leading PQC Families

Family	Encryption/ KEM	Signature
Hash-based		XX
Code-based	XX	X
Lattice-based	XX	X
Multivariate	X	XX
lsogeny-based	X	

XX – high-confidence candidates, X – medium-confidence candidates

Round 1 Candidates

69 accepted as complete, 5 since withdrawn 26 Countries, 260 co-authors

Family	Signature	Encryption/KEM	Overall
Lattice-based	5	22	27
Code-based	2	16	18
Multivariate	7	2	9
Hash-based	2		2
Isogeny-based		1	1
Other	3	4	7
Total	19	45	64 12

Status of Round 1 Submissions

12 considered broken, 8 in need of serious tweaks BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE. CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME. DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM. GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17. HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard, LOCKER, LOTUS, LUOV, McNie, Mersenne-756839. MQDSS. NewHope. NTRUEncrypt. NTRU-HRSS-KEM. NTRU Prime. NTS-KEM. Odd Manhattan. OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pqNTRUSign. pqRSA encryption. pqRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow. Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+. SRTPI. Three Bears. Titanium. WalnutDSA.

Some attack scripts already posted causing total break or serious tweaks. Many more receiving detailed analysis.

Sources: Lange, ICMC May 2018 & pqc-comments@nist.gov

Risks of Early Hardware Implementations

GMU Team Implementation Developed in Fall 2017-Spring 2018. Preliminary Results Presented at the Code-Based Cryptography Workshop in April 2018.

Attack against the published parameter set announced on May 16

An efficient structural attack on NIST submission DAGS

Élise Barelli^{*1} and Alain Couvreur^{†1}

¹INRIA & LIX, CNRS UMR 7161 École polytechnique, 91128 Palaiseau Cedex, France.

Abstract

We present an efficient key recovery attack on code based encryption schemes using some quasi-dyadic alternant codes with extension degree 2. This attack permits to break the proposal DAGS recently submitted to NIST.

keywords : Code-based Cryptography, McEliece encryption scheme, Key recovery attack, Alternant codes, Quasi–dyadic codes, Schur product of codes.

Comparison to Previous Contests

Similarities:

- Evaluation to be performed in **rounds** (12-18 months each)
- A pool of candidates narrowed down after each round
- Small tweaks allowed at the beginning of each round
- Optimized software implementation developed for various platforms
- No immediate plans for obligatory hardware implementations

Differences:

- Candidates not qualified to the next round (and not withdrawn by the authors) may be considered at a later date
- Taking into account quantum attacks, possible only on the platforms that do not exist at the time of the standard development
- Security analysis much more challenging and often controversial

After the initial evaluation period (e.g., 3 years) the division of all schemes into the following categories:

- 2 Productions Schemes: Recommended for actual wide-scale deployment. Highly Trusted.
- 4 Development Schemes: Time-Tested, Trusted.
 At least 15 years of analysis behind them.
 Intended for initial R&D by industry.
- 8 Research Schemes: Promising Properties, Good Performance. May contain some high-risk candidates. Main Goal: Concentrate the effort of the research community.

PQCRYPTO Consortium

11 universities and companies Funded by European Commission under the H2020 program

Initial Recommendations published in 2015 Co-authors of 22 Submissions

The Most Trusted Schemes – Encryption/KEM

Classical McEliece

- Proposed **40 years ago** as an alternative to RSA
- Code-based family
- Based on **binary Goppa** codes
- No patents
- Conservative parameters (Category 5, 256-bit security):
 - a) length n=6960, dimension k= 5413, errors=119
 - b) length n=8192, dimension k= 6528, errors=128
- Complexity of the best attack identical after 40 years of analysis, and more than 30 papers devoted to thorough cryptanalysis
 Sizes:
 - Public key:a) 1,047,319 bytes, b) 1,357,824 bytesPrivate key:a) 13,908 bytes, b) 14,080 bytesCiphertext:a) 226 bytes, b) 240 bytes
- **Efficient Software** (Haswell, larger parameter set)
 - ☆ 295,930 cycles for encryption, 355,152 cycles for decryption
 - ☆ Constant time
- Efficient Hardware (Yale University & Fraunhofer Institute SIT, Germany): open-source, targeting FPGAs; CHES'17, PQCrypto'18

Hash-based Schemes:

Security based on the security of a single underlying primitive: hash function

Representatives:

SPHINCS-256 => SPHINCS+, Gravity-SPHINCS

Features:

Relatively large signatures (~ tens of kilobytes) Signing more time consuming than verification

No reported hardware implementations

Likely Development Schemes – Lattice-based

- NTRUEncrypt proposed in 1996, published in 1998; standardized by IEEE, ANSI, EESS; no proof of security
- New Hope, CRYSTALS-KYBER, CRYSTALS-DILITHIUM, etc. New lattice-based schemes with extended security proof, smaller key sizes, and better efficiency

Reported Hardware Implementations:

- Ring-LWE, BLISS, NewHope: Ruhr University of Bochum, Germany
- NewHope: National Taiwan University, Academia Sinica, Taiwan
- LWE: Queen's University Belfast, ALaRI, RUB, Thales UK
- **Ring-LWE:** ESAT/COSIC KU Leuven, Belgium
- Ring-LWE: Universidad del Valle, Colombia
- **Binary RLWE:** The University of Texas at Austin, USA
- NTRUEncrypt: Technical University Munich, Germany
- NTRUEncrypt: George Mason University, USA

etc.

Major Implementation Challenges

- Mathematical complexity
- Large amount of **man-power** required
- Large keys and internal states
- Hardware resources required for full parallelization
- New types of basic operations
- Need for Random Sampling not only from uniform but also from Discrete Gaussian distributions
- Constant-time implementations
- Need for new SCA (Side-Channel Attack) countermeasures against power and electromagnetic analysis
- Plug-and-play replacement for current public-key cryptography units
- Intermediate use of Hybrid Systems

PQC Hardware API proposed by GMU

1. Minimum Compliance Criteria

- Encryption & decryption, Signature generation & verification
- Maximum message size
- Padding
- Permitted data port widths, etc.

2. Interface

3. Communication Protocol

4. Timing Characteristics

v1: October 2016 (ENC & SIG), v2: April 2018 (+ KEM & lessons)

PQC Development Package

Test Vector Generator (Python)

Library of Most Common Operations (HDL)

Major Optimization Targets

- Parallel processing
- Constant-time
- Parametric code

Lightweight

- Small area, power, energy per bit
- Resistance to power & electromagnetic analysis

Software/Hardware Implementations

Possible Environments: Xilinx SDSoC Intel SoC Embedded Development Suite

High-Level Synthesis (HLS)

Case for High-Level Synthesis

- All submissions include reference implementations in C
- Development time potentially decreased several times
- All candidates can be implemented by the same group, and even the same designer, reducing the bias
- Results from High-Level Synthesis could have a large impact in early stages of the competitions and help narrow down the search (saving thousands of manhours of cryptanalysis)
- Potential for quickly detecting suboptimal code written manually

Popular HLS Tools

Commercial (FPGA-oriented):

- Vivado HLS: Xilinx
- Academic:
- Bambu: Politecnico di Milano, Italy
- DWARV: Delft University of Technology, The Netherlands
- GAUT: Universite de Bretagne-Sud, France

Academic & Commercial:

LegUp: University of Toronto, Canada

Timeline of the NIST Standardization Effort

- By Nov. 30, 2018: Allowing/encouraging similar submissions to merge
- Early 2019: Beginning of Round 2
 - Candidates withdrawn or judged unsuitable by NIST
 - Candidates qualified to Round 2
 - ☆ Candidates left for future consideration
- Aug. 2019: Second NIST PQC Conference
- Early 2020: Beginning of Round 3
 - \Rightarrow Candidates selected for standardization
 - ☆ Candidates withdrawn or judged unsuitable by NIST
 - ☆ Candidates qualified to Round 3
 - ☆ Candidates left for future consideration
- 2021-2024: Possible future rounds
- Possible parallel efforts by IETF, IEEE, ANSI, ETSI, ISO/IEC

PQC Opportunities & Challenges

- The biggest revolution in cryptography, since the invention of public-key cryptography in 1970s
- Efficient hardware implementations in FPGAs and ASICs desperately needed to prove the candidates suitability for high-performance applications and constrained environments. Collaboration sought by submission teams!
- Likely extensions to Instruction Set Architectures of multiple major microprocessors
- Start-up & new-product opportunities
- Once in the lifetime opportunity! Get involved!

Thank You!

Questions?

Suggestions?

CERG: http://cryptography.gmu.edu ATHENa: http://cryptography.gmu.edu/athena

