

Evaluation of DPA Protected Implementations of CAESAR Finalists ACORN and Ascon and other Candidates

William Diehl, Abubakr Abdulgadir, Farnoud Farahmand, Kris Gaj, **Jens-Peter Kaps**

Cryptographic Engineering Research Group (CERG) http://cryptography.gmu.edu Department of ECE, Volgenau School of Engineering George Mason University, Fairfax, VA, USA

CryptArchi 2018

Outline

- 1.Introduction & Background
- 2.Methodology
- **3.Results**
- 4. Improved Comparison
- 5. Conclusions & Future Work

Introduction & Background

CryptArchi 2018 W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

CERG Team

Introduction & Background Methodology Results Improved Comparison Conclusions & Future Work **Motivation** AEAD Side Channel Analysis **Boolean Masking** Threshold Implementations

William Diehl Associate Professor Virgina Tech

Abubakr Abdulgadir Farnoud Farahmand Ph.D. Candidate

Ph.D. Candidate

Motivation AEAD Side Channel Analysis Boolean Masking Threshold Implementations

Comparison Supporting Competitions

Motivation

- Competition for Authenticated Encryption: Security, Applicability and Robustness (CAESAR)
 - 2014 57 Candidates in Round 1
 - 2015 29 Candidates in Round 2
 - 2016 15 Candidates in Round 3
 - > 2018 7 Candidates (2 lightweight) in Final Round
- NIST Lightweight Cryptography Standardization (2018 ?)
 Now includes Lightweight Authenticated Ciphers
 - Now includes Lightweight Authenticated Ciphers!
- NIST Post-quantum Cryptography (PQC) Standardization (2017 - ?)

Comparing Cost of Protection Against DPA

- Support to CAESAR Evaluations
 - Authenticated Ciphers
 - \succ Evaluation of side-channel resistance
- Some evaluation of countermeasures in block ciphers
 Very few evaluations of authenticated ciphers
- No large scale evaluation of multiple authenticated ciphers

Motivation **AEAD** Side Channel Analysis Boolean Masking Threshold Implementations

Authenticated Ciphers

Combine the functionality of **confidentiality**, **integrity**, and **authentication**

Side Channel Attacks

- Cryptographic Algorithms mathematically sound
 - Cryptanalysis not easier than brute-force attacks
- However, cryptography conducted in the physical world
 Hardware and software
- 1990s Development of Side Channel Attack techniques
 - Timing Analysis
 - Power Analysis
 - Electromagnetic Analysis
 - Fault Injection

Countermeasures

- Since early 2000s emphasis on SCA countermeasures
- Algorithmic
 - Masking (Boolean, arithmetic, table recomputation)
 - Threshold Implementations
- Non-algorithmic (hiding)
 - Balancing schemes (DPL/DDL)
 - Random Noise and Timing Randomization

Masking

- Masking divide sensitive data into shares
- Boolean Masking separates
 shares using XOR
- Masking is costly
 - Hardware area increases in mask order d;
 - $\succ \quad \text{Linear: area}(d) \sim d$
 - Non-linear: area(d) ~ d^2

Motivation AEAD Side Channel Analysis **Boolean Masking** Threshold Implementations

Example: Masking of Non-linear Transformation

No masking

All bus widths are same

Motivation AEAD Side Channel Analysis **Boolean Masking** Threshold Implementations

Masking and Glitches

Boolean Masking not secure given CMOS glitches Masked implementation attacked using glitch measurement [MPO05].

- >1 transition per clock cycle
- Varying effect on number of gates which change output
- Example: Different effect for toggles in *a*, *b*, or *c*.
- Dependence used to build correlation for DPA

Threshold Implementations¹

- Similar to Boolean masking, but data masked by more than one random variable
- To share function of degree *d*, *d*+1 shares are required
 Function of degree 2 (z = xy) needs 3 shares
- Advantages: Secure in presence of glitches
- Disadvantages: Area growth ≥ Boolean Masking, Complexity (for large S-Box)

1 – S. Nikova, C. Rechberger and V. Rijmen, "Threshold Implementations Against Side-Channel Attacks and Glitches," 2006

Threshold Implementations (Properties)

TI implementation secure in presence of glitches if **three** properties satisfied:

Property 1 - *Non-completeness*. Every function is independent of at least one share of each of the input variables.

If
$$z = N(x, y)$$
 and x and y are shared in n shares, then
 $z_1 = f_1(x_2, x_3, ..., x_n, y_2, y_3, ..., y_n)$
 $z_2 = f_2(x_1, x_3, ..., x_n, y_1, y_3, ..., y_n)$

$$z_n = f_n(x_1, x_2, \dots, x_{n-1}, y_1, y_2, \dots, y_{n-1})$$

. . .

If z_i does not depend on x_i and y_i , it cannot leak information about x_i or y_i .

CryptArchi 2018

Threshold Implementations (Properties -cont'd)

Property 2 – **Correctness**. The sum of the output shares gives the desired output. $z = \bigoplus_{i=1}^{n} z_i = N(x)$

Property 3 – **Uniformity**. A realization of z = N(x, y) = xy is uniform if for all distributions of the inputs x,y,..., the sharing preserves the output distribution.

Non-uniform output distribution using 3 shares (does not satisfy Property 3

Uniform output distribution using 4 shares (satisfies Property 3)

Previous Research

Analysis of DPA and countermeasures:

Block Ciphers AES - [MPLP+11], [BGNN+14], many others SIMON – [SSA14], [STE17] PRESENT – [PMKL+11], [KNPW+13], [DCWF16], [HPGM17] LED – [SSA14], [SMG16] TWINE – [Gup15]	Authenticated Ciphers $ACORN - [DRA16]^{1}, [DFL17]^{1}, [SSMC17]^{1}$ Ascon - [GWDE15], [GMK16], [GM17], [SD17] Cloc & Silc - None Jambu - None $Ketje - [BDNN+14]^{2}, [LFFD+14]^{2}, [TS13]^{2}$ AES-GCM - [Jaf07], [BFG14], [VRM17]		
Medium Scale analysis of LW Block Ciphers AES, SIMON, SPECK, PRESENT, LED,TWINE:	Large Scale analysis of Authenticated Ciphers ACORN, Ascon, Cloc & Silc, Jambu, Ketje:[DAF+18a, DAF+18b]		
[DAKG17, DAKG18] AES, SIMON, SPECK, PRESENT, KHUDRA: [SMGP+17]	Medium Scale analysis of Authenticated Ciphers ACORN, Ascon, AES-GCM: [DFA+18]		
CruptArphi 2018 M/ Diphi A Abubokr D Kon	1 – Fault Attacks, not DPA 2 – Strictly Keccak-f in SHA-3, not Ketje		
GIVDIAICHI ZUTO VV. DIEHI. A. ADUDAKI JP. Kaos	DPA PIOLECLEU CAESAR FINAIISIS1//51		

Approach FOBOS Welch's T-Test Leakage Detection for AEAD Ciphers

Methodology

CryptArchi 2018 W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

Approach FOBOS Welch's T-Test Leakage Detection for AEAD Ciphers

Approach

- Augment existing testbench (FOBOS)
- Start with CAESAR Round 3 candidate authenticated ciphers
 - Test for leakage
 - Implement countermeasures
 - Verify reduced leakage
- Benchmark protected and unprotected versions compare costs

Approach **FOBOS** Welch's T-Test Leakage Detection for AEAD Ciphers

Agilent

Technologies

Oscilloscope

Instek SFG-2120

20 MHz Function

DC power supply

DSO6054A

Generator

• Agilent E3620A

Control and

Victim Board:

Xilinx Spartan 6

Flexible Open-source workBench fOr Side-channel analysis (FOBOS)

Additional detail available at https://cryptography.gmu.edu/fobos/

Approach FOBOS **Welch's T-Test** Leakage Detection for AEAD Ciphers

Attack-based Testing

Examples

Cipher	Counter- measures	# of Traces	Recovered	Equipment	Reference
Lake Keyak	No	60,000	5-bit key fragment	SAKURA-G	Samwel & Daemen 2017
MAC-Keccak	No	500,000	1 byte @ 90%	SASEBO GII	Luo et al. 2014
SIMON	No	4000	Key fragment	SASEBO GII	Shaverdi et al 2017
SIMON	Yes	100,000	Not recovered	SASEBO GII	Shaverdi et al 2017

Measure of Effectiveness:

"How many traces" to recover *n*-bit key fragment?

CryptArchi 2018

Approach FOBOS **Welch's T-Test** Leakage Detection for AEAD Ciphers

Leakage Detection Using Welch's t-test¹

Advantages Find leakage without attack Don't need power model Don't need to know architecture Disadvantages Doesn't recover key Doesn't show difficulty of attack

 $p = 2 \int_{|t|}^{\infty} f(t, v) dt$

T. Schneider, A. Moradi, "Leakage Assessment Methodology – a clear roadmap for side-channel evaluations," 2015 1 – [GJJR11], [SM16]

p = 2F(-|4.5|, v > 1000)< 0.00001

Approach FOBOS **Welch's T-Test** Leakage Detection for AEAD Ciphers

Leakage Assessment Using t-test

T-test fails; |t|>4.5; design leaks information T-test does not fail; |t|<4.5; leakage not detected

Measure of Effectiveness: "Leaks or doesn't leak"

CryptArchi 2018

Approach FOBOS Welch's T-Test Leakage Detection for AEAD Ciphers

Challenge of DPA Evaluations on AEAD Ciphers

- Block Ciphers easy to evaluate¹
 - Simple interface
 - Short text vectors
 - Limited protocol
- Authenticated Ciphers more complex
 - Lots of Parts
 - Long test vectors
 - Complex protocol
- Difficult to evaluate many ciphers with different interfaces

1 – [BGNN+14], [MPLP+11], [PMKL+11], [KNPW+13], [CITE16], [SMG16], [STE17]

Approach FOBOS Welch's T-Test Leakage Detection for AEAD Ciphers

Solution: Leakage Detection for AEAD Ciphers

Interface Using CAESAR HW API

- Interface & Protocol
 - Compatibility
 - Fairness
- Common test vector generator
- Development Package has I/O
 modules

FOBOS w/ CAESAR API Test Vectors

Unprotected Cipher Implementations Protect AEAD Ciphers Benchmarking

Results

CryptArchi 2018 W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

Authenticated Ciphers Investigated¹

Completed:

AES-GCM

ACORN

Ascon

CLOC (based on AES, TWINE) SILC (based on AES, PRESENT, LED) JAMBU (based on AES, SIMON) Ketje Jr.

1 – [MV05], [Wu16], [DEMS16], [IMGM+16], [WH16], [GMU17], [Huang17a], [Iwata17], [Huang17b], [BDPV+16]

T-Tests on Unprotected Cipher Implementations

CryptArchi 2018

General Steps to Protect Authenticated Ciphers against DPA

- Protect the primitive (Using 2 or 3-share TI)
 - Investigate best option for protecting non-linearity
 - Add pseudorandom number generator (PRNG)
- Protect authenticated cipher layer
 - Straightforward, except AES-GCM
- Encapsulate in protected Pre- and Post-Processors
- Run the t-tests
- If required, produce unprotected version with same architecture
 - \succ Apples to apples!

ACORN

- Hybrid 2- / 3-share TI Protection
- 2 clock cycles per state update
- 10 *n*-bit TI-protected AND modules
- (10 x (2 reshare + 1 refresh) x n)
 / 2 = 120 random bits/ clock
 cycle (n = 8 for ACORN-8)

107 111 153

193 196 229

154 160 192

60

0 23

61 66

106

Unprotected Cipher Implementations **Protect AEAD Ciphers** Benchmarking

Ascon

- Sponge Construction (Absorption & Squeezing)
- Large internal state (320 bits)
- 5-bit S-Box; Low-algebraic degree

Hybrid 2- / 3- share with bitslice S-Box

7 cycles/round

192 random bits per clock cycle (128 reshare + 64 refresh)

CryptArchi 2018

W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

CERG

AES-GCM (Galois Counter Mode)

- Non-linearity (S-Box) of degree 7
- Use "Tower Fields" to reduce to composition of degree 2 functions
- Hybrid 2- /3-share TI protection
- 20 cycles / round x 10 rounds = 205 clock cycles per block
- Non-linear multiplier (128 clock cycles per block)
- 40 random bits per clock cycle

W. Diehl, A. Abdulgadir, J. P. Kaps and K. Gaj," Comparing the Cost of Protecting Selected Lightweight Block Ciphers Against Differential Power Analysis in Low-Cost FPGAs," *MDPI Computers Special Issue "Reconfigurable Computing Technologies and Applications*," Apr. 9, 2018.

Unprotected Cipher Implementations **Protect AEAD Ciphers** Benchmarking

Protected Authenticated Ciphers

CryptArchi 2018 W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

Benchmarking of Unprotected Implementations

- Xilinx ISE 14.7 Spartan-6
- Identical architectures
- Optimized using ATHENa¹
- Smallest:
 - 1) ACORN
 - 2) JAMBU-AES
 - 3) JAMBU-SIMON
- Highest Throughput:
 - 1) Ketje
 - 2) ACORN
 - 3) JAMBU-SIMON

CryptArchi 2018

W. Diehl, A. Abubakr, ..., J.-P. Kaps

Benchmarking of Protected Implementations

Power and Energy-per-bit (Spartan 6 @ 10 MHz)

Summary of Results

Best Performers

Rank	Area	Throughput	Throughput / Area	Power	Energy
1	ACORN	Ketje Jr.	ACORN	ACORN	ACORN
2	JAMBU-AES	ACORN	Ketje Jr.	JAMBU-AES	Ketje Jr.
3	JAMBU-SIMON	JAMBU-SIMON	JAMBU-SIMON	SILC-AES	SILC-PRESENT

Problem Areas

Area	Ascon (64-bit datapath, growth in S-Box, folded architecture); CLOC-TWINE (S-Box growth)
Throughput	JAMBU-AES (only one AES Core; Tag generation requires second call)
Power	Ketje Jr. (200-bit state in basic iterative architecture); JAMBU-SIMON (48-bit unrolled x4 architecture)
Energy	CLOC-TWINE (High non-linearity in TWINE primitive & CLOC layer)
Randomness	Ketje Jr. (200 bits/cycle); Ascon (192 bits/cycle); ACORN (120 bits/cycle)
V. Diehl, A. Abdulgadir, F. Farahmand, J.P. Kaps and K. Gaj, "Comparison of Cost of Protection Against Differential Power Analysis for Selected Authenticated Ciphers," HOST 2018	

Areas for Improvement Build Improved Implementations Fix SCA Leakage Results

Improved Comparison ACORN vs. Ascon

CryptArchi 2018 W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

Areas for Improvement Build Improved Implementations Fix SCA Leakage Results

Areas for Improvement

- Better lightweight implementations
- Improved ability to pin-point leakage
- Reduced requirements for randomness
- Improved Random Number Generation
- Estimation of side channel resistance through glitch transitions

Areas for Improvement Build Improved Implementations Fix SCA Leakage Results

Suboptimal Protected Implementations

- CAESAR Round 3 HW submissions optimized for TP/A ratio
 - \succ Full-width datapaths (= more register writes/cycle, higher power)
 - \succ Basic iterative architectures (= longer critical paths; glitch chains)
- But threshold implementations (TI) favor smaller designs
 - Quadratic growth in area
 - \succ Smaller critical paths (= register after each non-linearity)
 - Fewer random bits / cycle
- CAESAR HW Development Package optimized for High Speed
 - External I/O bus widths \geq 32 bits
 - \succ Includes extra functionality

Areas for Improvement **Build Improved Implementations** Fix SCA Leakage Results

Solution: Build Improved Lightweight Implementations

1 - Yalla & Kaps, ReConfig 2017

Increased clock cycles

Areas for Improvement **Build Improved Implementations** Fix SCA Leakage Results

Improved Unprotected Lightweight Implementations

40% area reduction 55% power reduction But... 44% reduction in TP/A ratio 3.6x increase in E/bit

F. Farahmand, W. Diehl, A. Abdulgadir, J. P. Kaps and K. Gaj,"Improved Lightweight Implementations of CAESAR Authenticated Ciphers," FCCM 2018

CryptArchi 2018 W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

Areas for Improvement Build Improved Implementations **Fix SCA Leakage** Results

How to fix the leakage?

Problem

Share Separation in Hardware

Share Separation in Software

Areas for Improvement Build Improved Implementations Fix SCA Leakage **Results**

Improved Comparison of Protected Implementations

New lighterweight implementations of ACORN, Ascon, **AES-GCM** Development Package v2.0 Share Separation in Software (FOBOS upgrade) **Two** optimization targets: ACORN & Ascon (2 each) which are 1) Close to (but less than) area of (protected) AES-GCM "area-equivalent" – How does TP change? 2) Close to (but greater than) throughput of (protected) **AES-GCM** "TP-equivalent" – How does area change?

Areas for Improvement Build Improved Implementations Fix SCA Leakage **Results**

How to hit targets?

Given: Results of new (LW) AES-GCM: 4429 LUTs, 77 Mbps Given: Results of previous protected ACORN & Ascon (*) Estimate:

1) "Area-equivalent"

ACORN: Since Area_{AES-GCM} >> Area_{ACORN-8}, pick largest ACORN = ACORN-32 Ascon: Since Area_{Ascon} ~ Area_{AES-GCM}, pick 64-bit, 5-cycle Ascon-large 2) "TP-equivalent" ACORN: $TP_{ACORN-8}$ (570 Mbps) $\div 8 = 71$ Mbps $\approx TP_{AES-GCM}$ so pick ACORN-1 Ascon: $TP_{ACORN-8}$ (134) $\div 2 = 67$ Mbps $\approx TP_{AES-GCM}$ so pick 10+ cycle Ascon-small

* Including PRNG

Areas for Improvement Build Improved Implementations Fix SCA Leakage **Results**

Results of T-Tests

CryptArchi 2018

Areas for Improvement Build Improved Implementations Fix SCA Leakage **Results**

ACORN vs. Ascon: Results

CryptArchi 2018

W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

Summary Future Work

Conclusions & Future Work

CryptArchi 2018 W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

Summary Future Work

Summary

- CAESAR Round 3 Candidates
- ACORN-8 best in area, TP/A ratio, power, energy per bit
 - Ketje Jr. and JAMBU-SIMON high TP, but high power;
 - JAMBU-AES, SILC-AES, SILC-PRESENT place well (various metrics)
- Effects of implementations not optimized for protection
- Challenge of initial mixing of randomness
- Improved LW implementations
- Improved comparison of CAESAR finalists: ACORN & Ascon
 - Both improve over AES-GCM, but ACORN is best

Summary Future Work

Future Research

- Reduce randomness requirements
- Improve random number generation
- Measure leakage due to glitches
- Signature analysis
- Heterogeneous architectures
- Post Quantum Cryptography

Thanks for your Attention

CryptArchi 2018 W. Diehl, A. Abubakr, ..., J.-P. Kaps DPA Protected CAESAR Finalists

