
1

Spongy-Gift: A New Lightweight Message

Authentication Code
Cuauhtemoc Mancillas López∗, Mridul Nandi†

∗Hubert Curien Laboratory UMR CNRS 5516, University of Lyon at Saint Etienne

cuauhtemoc.mancillas.lopez@univ-st-etienne.fr
†Indian Statistical Institute, Kolkata India

mridul@isical.in

Abstract—In this work we introduce Spongy-Gift, a Message
Authentication Code based on a sponge function that use Gift-
cipher round function to construct its public permutation. Some
implementation results on FPGAs are presented to show Sponge-
Gift needs very few resources to be implemented.

I. INTRODUCTION

Actually with the introduction of Internet of Things (IoT)

technology, where devices that we used in our normal life

could be connected to internet to receive or send information,

in this scenario security is a very important issue. For example

a medical device that monitoring the status of the glucose in

the blood of some patient and send such status to the doctor, if

some attacker can change such messages could result in a bad

diagnosis. In this example secrecy of the information is not

require, but assure that the doctor receives the correct message

generated by the device is mandatory. For this important task

we can use a Message Authentication Code (MAC) .

(MACs) are symmetric key algorithms which provides data

authentication and data integrity between two parties. The first

step is to establish a common key K , if one entity wants to

send a message m then it needs to compute T ←MACK(M),
in the insecure channel will travel the pair (M,T). To verity

the received message (M,T) the receiver entity needs to

compute T ′ ← MACK(M) and then check if T = T ′ then

the message is valid in other way the message is rejected. If

the verification fails two possible reasons, the key is not same

(this means a not authorized entity tries to communicate with

us failing the authentication) and the message was modified

(data integrity fails).

In this paper we introduce a new MAC that is suitable

for constrained environments in memory, energy or physical

resources. First we explain in general our proposal, then a

specific instantiation is detailed and finally we show some

results for its implementation on FPGAs.

II. SPONGY GIFT

A. Preliminaries

Let M a message, to be processed it is splitted as

(M
(1)
1 ,M

(2)
2), ..., (M

(1)
ℓ ,M

(2)
ℓ) where |M

(1)
i | = |M

(2)
i | = n

and |M
(1)
i |+ |M

(2)
i | = 2n for i = 1...ℓ. We will call as blocks

all pairs (M
(1)
i ,M

(2)
i) of 2n-bit size. A message authentication

code is a function IV ×K×M→ T where IV ,K,M, T are

IV space, key space, message space and tag space respectively.

Informally a MAC is secure when it is hard for an adversary

to generate a pair of message tag pass the verification test,

also there is a reduction of a MAC as psudorandom function.

B. Definition of a Public Permutation

The basic idea behind our new construction if that if we

have a n−bit permutation of with nice properties we can

construct other permutation of 2n−blocks of message using

a few additional components, just one xor at its input Figure.

Fig. 1. Basic structure to construct a 2n−bit permutation from an n−bit
one.

In Figure 1 Pq is an n−bit permutation iterated q times,

this structure could be used as a modified Feistel network to

construct the secure 2n−bit permutation as is shown in Figure

2.

The overhead to convert the basic structure in Figure 1 to

the complete 2n− bit permutation P is very low, just some

additional inputs to the multiplexer and additional ⊕. This will

be clarify in implementation section.

Using P we can compute a MAC as follows:

1) S
(0)
top, S

(0)
bot ← 0n

2) M
(1)
0 ||M

(2)
0 ← K||IV

3) for i = 0 to ℓ do

4) w1 ← Pq(M
(1)
i ⊕ S

(i)
bot)

5) w2 ← Pq(M
(2)
i ⊕ S

(i)
top)

6) if i = ℓ then k = 7 else k = 6
7) for j = 3 to k do

8) wj ← Pq(wj−2 ⊕ wj−1)
9) return w7 as tag

2

Fig. 2. Complete view of how to create a secure 2n−bit permutation P from Pq, in this case six rounds are used.

Fig. 3. MAC constructed using P each Mi is a 2n−bit block.

TABLE I
GIFT SBOX.

x 0 1 2 3 4 5 6 7

GS(x) 1 A 4 C 6 F 3 9

x 8 9 A B C D E F

GS(x) 2 D B 7 5 0 8 E

For an specific instantiation of our construction we use the

round function of block cipher Gift as P , that give the name

of Spongy-Gift. In the next section we explain how Gift round

is computed.

C. Gift permutation

Based on security and efficiency facts we have selected

as permutation the round function of the lightweight block

cipher Gift [1]. In Figure 4 such round function is showed,

it consist of three transformations: substitution boxes, bit

oriented permutation and add round key. Four our purpose

it is not necessary to use round keys, so we just omit this

transformation. The substitution box is nibble oriented so it

implementation cost is very low, this step consist only in

the substitution of input value for the value in the table. In

TableI the corresponding values of substitution box GS(·) are

shown. This represents the non-linear layer. The bit oriented

permutation is a shuffle of current state after the application

of GS(·), the corresponding bit permutation is shown in Table

II.

Security: The security of this scheme depends on the

correct selection of the permutation P , the number of iterations

q and the number of rounds of Pq . As a concrete instantiation

of P we use the round of 64−bit block cipher Gift [1].

The authors of gift claim that for nine round of Gift the

differential probability is 2−46.99, taking this fact we can get

a good security for six round of P9 to construct P . This is

a conservative parameters and we are studding the trade off

in the selection of parameters q and number of rounds. It is

important to take in to account that from 64−bit permutation

we are constructing a 128−bit permutation. So to process

128−bit P takes 9 ∗ 6 = 54 iteration of base permutation

P .

In the next section we present some implementation results

on FPGAs.

III. HARDWARE IMPLEMENTATION

Taking about lightweight primitives there are many studies

about the implementation of block ciphers such as [4] and [2].

In general when a specific lightweight primitive is introduced,

it hardware implementation is also given to prove that it is

lightweight.

The structure of Gift is similar to PRESENT, so some of

the techniques using to implement present could be used for

Gift. In the literature there are many optimized architectures

for PRESENT, presenting different strategies to minimized

the size of the implemented design. For example in [3]

an implementation using a block ram to store the state is

presented, in [5] the SBOX is implemented as a function and

in [4] 16-bit data path optimized architectures. In the following

subsection we will explain the design decisions.

A. Design Decisions

• Our design is suitable for the FPGAs with 6-input LUTs.

• As we are locking for a very small implementation,

we use some specific features of xilinx FPGAs such as

SRLC32E (LUT as a 32-bit shift register with dynamic

selection of the output).

• Sequential fashion implementation, using data-path sizes

lesser than 64 bits to get small area paying the cost of

the execution of a round in more clock cycles.

• Get a extremely high frequency is not that important

due to the target application, in general IoT requires low

power consumption so high frequencies are not require.

B. Implemented Architectures

Reviewing the existing literature for implementation of

lightweight block ciphers, in special PRESENT which is quite

similar to Gift we decided to implement two ultra lightweight

architectures. One is based in shift registers with parallel

outputs and load to store the state with 16-bit as data-path

size [4], the second one uses a 4-bit data-path and is based in

one bit shift registers to store the state and to performed the

bits permutations. This architectures use the special features

inside the LUTs in Xilinx FPGAs).

Next we will explain in details the 4-bit data-path archi-

tecture, the general architecture is presented in Figure 5. As

we can see it is very simple, there are four functional blocks

and the control unit. In xilinx FPGAs slices of type SLICEM

contain LUTs which can be configured as 32-bit shift registers,

3

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS GS

RK i

Fig. 4. Gift round function.

TABLE II
GIFT BIT-WISE PERMITUTATION.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Q(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Q(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Q(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

so they can implement a delay of 32 clock cycles using only

one LUT instance 32 flip-flops. Other very useful characteristic

of them is that their output could be selected dynamically from

0 to 31, doing them very useful for small implementations

because they work at the same time as memory and shift

registers. The specific instantiated primitive is SRLC32E [6].

The implementation of SBOX is performed with LUTs. As

each LUT can implement two five-input or less functions when

all the outputs are common as in this case, the implementation

of 4-bit inputs 4-bit outputs SBOX is implemented using only

two 6-input LUTs.

The structure of Spongy-gift needs to store the previous

value, so one register is required. As the architecture uses an

4-bit data-path it needs to store sixteen 4-bit values in a FIFO

mode, and then recover each of them when require. For this

purpose only four LUTs configured as 16-bit shift register are

used.

Block labeled as permutation register is also composed of 4

LUTs configure as shift registers but in this case, the output of

each of them is dynamically selected depending of the value

that is necessary to compute the bit oriented permutation in

Gift round. As we explain before this functionality allow us to

store all the sixteen nibbles and then extract them depending

of the value required for the permutation, taking in to account

that each clock cycle the values will be shifted in one position

and the first position will contain the actual round values.

The case of the multiplexer in the input of SBOX takes

4 LUTs, as it has four inputs and two bits for selection

it is a 6-bit input function per each bit. This multiplexer

selects between the value of K||IV when the computation is

started, the xor of M
(1)
i , M

(2)
i or directly feedback from round

function and the value stored in the previous value registers

when each , the third input is the xor of actual computed value

and the previous one.

Control unit was implemented as a finite state machine

which feed the necessary control signals of all the modules

in the top par of Figure 5. It produces the control signal for

each SRLC32E to produce the bit-oriented permutation output,

and the selector of multiplexer.

Data-flow:

Each round of permutation takes nine clock cycles so the

total numbers of clock cycles to process 128−bit block is 54

clock cycles for 6 rounds of permutation. Depending of the

data-path size this number increase, for 16−bit is 216 and for

4−bit is 864.

When a reset signal is received the first two 64-bit block

processed are the IV ||K , the two first rounds multiplexer

selects the input labeled IV,K,Mi and then for next four

rounds the input to SBOX is selected from the xor of actual

and previous values. When the message blocks are processed

the two first rounds the input from the xor of previous value

and message Mi, and the following rounds are as before the

xor of actual and previous values.

16-bit data-path architecture: As Gift state can be seen

as a 4x4 matrix with 4-bit elements, computing the bit per-

mutation of the first row produce the first column of the next

round state. The strategy is to store the state column-wise, but

replicated four times to allow the parallel reading of a row. For

this purpose we used the primitive SRL16E of Xilinx FPGAs.

16-bit Gift and OMAC: To have a point of comparison

with other lightweight MAC algorithm we have implemented

OMAC using Gift cipher. Gift was implemented using the

same strategy as for 16-bit based Gift MAC and the key

scheduling was also implemented with SRL16E.

In the next subsection we present experimental results of

implemented architectures.

IV. RESULTS AND DISCUSSIONS

In the Table III we list the results obtained using Xilinx ISE

tool for Spartan 6 and Virtex 5 FPGAs and Vivado for Artix

7. Some papers also present results for Spartan 3 FPGAs but

in our case our architecture is not suitable for 4-input LUTS.

4

Fig. 5. 4-bit data-path architecture for Spongy-Gift.

There are no implementations of lightweight MACs, so we

design an architecture for Gift and implemented OMAC using

it. As Present algorithm is very similar to Gift we also compare

our designs with it.

From the Table III we can see that our implementation using

4-bit data-path is the smallest in all scenarios even using only

15 slices on Artix 7 FPGA. We compute the throughput using

the original frequency but taking into account the number of

rounds for Gift-mac. Only in the case of Virtex 5 the design

in [4] is better than our, but as we said before for target

applications high throughput is not required.

The results in Table III show that we save a significant

amount of flip-flops because we are using LUTs as shift

registers. The designs synthesized for Spartan 6 FPGAs are

more compact than the others, the reason is that the shift

registers (not more than 16-bit deep) are packed in pairs in

only one LUT.

Our design based on 4-bit data-path is amazingly compact

and its frequency is high because the simplicity of the critical

path, this architecture is suitable for embedded systems.

These results show that our MAC is really ultra lightweight,

it requires very few resources to be implemented in hardware,

and its implementation ratio can be study deeper.

V. CONCLUSIONS

In this work we introduce a new 2n−bit public permutation

P , we clarify that it can use any n−bit secure permutation but

for this specific work we use Gift round function. Using P we

introduce Spongy-Gift, a new Message Authentication Code,

it is a Sponge fashion using P as permutation. The imple-

mentation results show that Spongy-Gift can be implemented

using fey resources on FPGAs and its speed is enough for

lightweight cryptography application scenarios.

REFERENCES

[1] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards
reaching the limit of lightweight encryption. In Wieland Fischer and Nao-
fumi Homma, editors, Cryptographic Hardware and Embedded Systems

- CHES 2017 - 19th International Conference, Taipei, Taiwan, September

25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer

Science, pages 321–345. Springer, 2017.
[2] William Diehl, Farnoud Farahmand, Panasayya Yalla, Jens-Peter Kaps,

and Kris Gaj. Comparison of hardware and software implementations
of selected lightweight block ciphers. In Marco D. Santambrogio, Diana
Göhringer, Dirk Stroobandt, Nele Mentens, and Jari Nurmi, editors, 27th

International Conference on Field Programmable Logic and Applications,

FPL 2017, Ghent, Belgium, September 4-8, 2017, pages 1–4. IEEE, 2017.
[3] Elif Bilge Kavun and Tolga Yalçin. Ram-based ultra-lightweight FPGA

implementation of PRESENT. In Peter M. Athanas, Jürgen Becker,
and René Cumplido, editors, 2011 International Conference on Recon-

figurable Computing and FPGAs, ReConFig 2011, Cancun, Mexico,

November 30 - December 2, 2011, pages 280–285. IEEE Computer
Society, 2011.

[4] Carlos Andres Lara-Nino, Arturo Diaz-Perez, and Miguel Morales-
Sandoval. Lightweight hardware architectures for the present cipher in
FPGA. IEEE Trans. on Circuits and Systems, 64-I(9):2544–2555, 2017.

[5] J. J. Tay, M. L. D. Wong, M. M. Wong, C. Zhang, and I. Hijazin. Compact
fpga implementation of present with boolean s-box. In 2015 6th Asia

Symposium on Quality Electronic Design (ASQED), pages 144–148, Aug
2015.

[6] Xilinx. 7 Series FPGAs Configurable Logic Block, User guide.
https://www.xilinx.com/support/documentation/user_guides/ug474_
7Series_CLB.pdf. Online; accessed 17 December 2017.

5

TABLE III
PERFORMANCE OF IMPLEMENTED ARCHITECTURES AND COMPARISON WITH PUBLISHED IMPLEMENTATIONS.

- FF LUTs Slices Frequency Thoughput

(MHz) (Mbps)

Spartan 6

Present-16b [4] 153 170 48 257.40 123.86

Gift-16b 46 165 45 256.85 140.49

Gift-OMAC-16b 75 198 65 249.25 136.341

Spongy-Gift–16b 30 106 36 200.00 117.97

Spongy-Gift–4b 31 42 24 307.225 45.46

Virtex 5

Present-16b [4] 153 190 67 542.30 2892.26

Present-8b [5] 201 222 62 236.57 630.85

Gift-16b 42 202 61 300.25 164.23

Gift-OMAC-16b 65 225 70 289.12 158.15

Spongy-Gift-16b 26 157 54 287.77 169.74

Spongy-Gift-4b 33 64 21 318.06 47.06

Artix 7

Gift-16b 50 185 66 376.25 205.81

Gift-OMAC-16b 72 225 70 369.12 201.91

Gift-mac-16b 25 139 61 329.65 194.77

Gift-mac-4b 31 43 15 387.90 57.40

