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Side channel attack vectors

in IoT [Ronen’16]
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Context



EM fault injection

Physical principle: Lenz-Faraday Law
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EM fault injection

Benefits of EM injection

X non-invasive [Schmidt’07]

X local [Poucheret’11, Chusseau’14]

X precise and reproducible [Dehbaoui’12]

Balance precision / equipment cost & human investment
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EM fault injection

EM fault models

how to distinguish fault on data flow and control flow ?

[Dehbaoui’12, Moro’13]

how to observe a given fault model ? [Dureuil’16]

control flow data flow

Replay Instr. skip Opcode corruption PC corruption Monobyte fault monobit fault

Schmidt’07 ? ? ?

Dehbaoui’12 X ? ? X

Moro’13 X X X X

Rivière’15 X

Non-exhaustive review of observed EM fault models
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EM fault injection

Our research direction: instruction skip fault model

target both control and data flow

easy to induce leveraging EM injection
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EM fault injection

Single Instruction skip on 8-bit and 32-bit MCU

a relatistic fault model [Schmidt’08, Barenghi’09, Balasch’11,

Breier’15]

well known in fault simulation and counter-measure design

[Rivière’14, Moro’14, Barry’17]

Multiple consecutive instruction skips ?

Fault on cache read (instruction replay) [Rivière’15]

clock glitch on pipelined architecture [Yuce’16]

Contribution:

How realistic is the EM induced multiple consecutive skips fault model ?
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Analysis of EM injection

parameters



Analysis of EM injection parameters

Experimental setup and methodology
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Analysis of injection parameters

Experimental parameters

Probe location (x, y, z)

Pulse amplitude

Delay or Injection timing

Pulse width

B Main challenge: combinatorial explosion ! B
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Analysis of injection parameters

Fault model characterization

Do we retrieve initialization value ?

Does the execution time change ?

(TLOAD = 2TNOP)
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Analysis of injection parameters

EM specific fault mecanism
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Analysis of injection parameters

The injection threshold is defined as the minimum pulse amplitude,

which induces an instruction skip

ld r19, 0x36

One should target susceptibility windows [Ordas’15]

EMSE, Secure Architectures & Systems 11



Analysis of injection parameters

Peridodicity of temporal sensitivity

ld r19, 0x36; ld r20, 0x35

Take should be taken of the injection timing accuracy
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Analysis of injection parameters

Targeting a single instruction (amplitude, injection timing)

Same level of control as laser injection [Breier’15]
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Analysis of injection parameters

Wrapping up:

Understanding the influence of EM injection parameters

Targeted single instruction skip (delay, amplitude)

Reproducible skip in susceptibility windows
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Skipping several consecutive

instructions



Skipping several consecutive instructions

Pulse width influence ?

Qualitative observations:

long pulse lead to stress

attenuation [Moro’13]

very short pulse lead to

stress attenuation
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Skipping several consecutive instructions

Hypothesis : damped wave packets on power-ground network (PGN)

Probe / PGN coupling [Poucheret’11]

voltage glitch on PGN [Zussa’14]

Constructive interferences (min. at -1.5 V)
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Skipping several consecutive instructions

Hypothesis : damped wave packets on power-ground network (PGN)

Probe / PGN coupling [Poucheret’11]

voltage glitch on PGN [Zussa’14]

Destructive interferences (min. below -1 V)
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Skipping several consecutive instructions

Characterization methodology of width influence:
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Skipping several consecutive instructions

Hypothesis : damped wave packets on power-ground network (PGN)

destructives interferences w < 20 ns

constructive interferences w ≈ 25 ns

no interferences w > 50 ns

Are we still able to select a given instruction ?

EMSE, Secure Architectures & Systems 19



Skipping sevseral consecutive instructions

Targeting a specific instruction block (width, timing)
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Bypassing a secured verifyPIN



Practical case: bypassing a secured verifyPIN

Duplication countermeasure on non-secured atmega328p
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Practical case: bypassing a secured verifyPIN

injection parameters: voltage = -350 V, width = 25 ns
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Conclusion



Conclusion

Our methodology allowed us to fault:

A specific instruction (amplitude, timing)

Or a specific number of instructions (pulse width, timing)

In a reproductible manner (amplitude, timing)

A fine grain width/timing adjustment is required
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Next steps

Can it be extent to 32-bit architectures ?

External syncronization ?

Attack of secure boot implementation ? [Timmers’16]
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Thanks for your attention !
alexandre.menu@emse.fr
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