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Configurable computing
What?

Configurable computing platforms are hardware platforms to which changes in 
the datapath can be applied in addition to changes in the control flow
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FPGAs are the most widely used configurable computing platforms

Energy efficiency

Configurable computing
Why?

• Configurable computing platforms have

– the flexibility of software,

– the performance of hardware,

– the energy efficiency of hardware.



Configurable computing
Why for crypto?

• Minimize the overhead of crypto in terms of 
performance and area/energy efficiency

• Provide cryptographic agility, i.e. the ability of 
cryptographic implementations to be upgraded or 
updated depending on newly detected vulnerabilities 
or changing standards
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Configurable computing for crypto
How?

• Cryptographic algorithms

• Cryptographic algorithms on commercial FPGAs

• Crypto-oriented configurable hardware

Cryptographic algorithms 

• Symmetric-key cryptography:
– bit permutation

– rotation

– addition modulo 2n (in ARX-based ciphers)

– addition modulo 2, i.e. exclusive OR (XOR)

– substitution box (S-box)

– quadratic functions (for threshold implementations)
f(x,y,z,w) = a0a1xa2ya3za4wa12xya13xza14xwa23yza24ywa34zw

• Public-key cryptography:
– operations in prime fields

– operations in binary extension fields
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Commercial FPGAs
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Commercial FPGAs

• Besides lookup tables and 
routing elements, FPGAs 
also contain:
– distributed and centralized 

storage (BRAM),

– DSP blocks,

– fast carry chains,

– high-speed I/O,

– clock management blocks.



Crypto algorithms on commercial FPGAs 

• Symmetric-key cryptography:
– bit permutation

– rotation

– addition modulo 2n (in ARX-based ciphers)

– addition modulo 2, i.e. exclusive OR (XOR)

– substitution box (S-box)

– quadratic functions (for threshold implementations)
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Crypto algorithms on commercial FPGAs 

• Symmetric-key cryptography:
– bit permutation routing

– rotation routing

– addition modulo 2n (in ARX-based ciphers) fast carry chains

– addition modulo 2, i.e. exclusive OR (XOR) LUTs

– substitution box (S-box) LUTs, BRAM

– quadratic functions (for threshold implementations) LUTs
f(x,y,z,w) = a0a1xa2ya3za4wa12xya13xza14xwa23yza24ywa34zw

• Public-key cryptography:
– operations in prime fields DSP blocks, fast carry chains

– operations in binary extension fields LUTs
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Crypto-oriented configurable hardware

Solutions consist of coarse-grained configurable HW architectures (combined 
with SW programmability) or fine-grained configurable HW architectures

FPGA

PipeRench [1]

• Coarse-grained reconfigurable architecture
– Parallel stripes of processing elements with 

pipelining registers in between

• 6 (unprotected) block ciphers evaluated

• 0.25 µm technology

• 2x-12x speedup over microprocessors

• No comparison to FPGAs 

• Dedicated compiler with Dataflow 
Intermediate Language (DIL) as an input

[1] R. Taylor and S. Goldstein, “A high-performance flexible architecture for cryptography”, CHES 1999.



COBRA [2]

[2] A. Elbirt and C. Paar, “An instruction-level distributed processor for symmetric-key cryptography”, 
IEEE TPDS 2005.

• Coarse-grained reconfigurable 
architecture
– Configurable cells with 32-bit buses

• 3 (unprotected) block ciphers 
evaluated

• 0.35 µm TSMC technology

• Speedup over microprocessors

• Inferior performance compared to 
FPGAs

• VLIW assembler with COBRA-specific 
assembly language as an input

What’s the problem?



How can we do better?

1. Be lazy, why work if we can 
(re-)use the efforts of others
– No new design tools  rely on 

the decades of experience of 
EDA companies
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How can we do better?

1. Be lazy, why work if we can 
(re-)use the efforts of others
– No new design tools  rely on 

the decades of experience of 
EDA companies

2. Maximize productivity
– No new design languages/input 
 use VHDL, Verilog, HLS

3. Optimize efficiency
– Area (= cost), performance

Cryptographic algorithms 

• Symmetric-key cryptography:
– bit permutation

– rotation

– addition modulo 2n (in ARX-based ciphers)

S = ABCin Cout = AB + (A+B)Cin = ABACinBCin

– addition modulo 2, i.e. exclusive OR (XOR)

– substitution box (S-box)

– quadratic functions (for threshold implementations)

f(x,y,z,w) = a0a1xa2ya3za4wa12xya13xza14xwa23yza24ywa34zw

• Public-key cryptography:
– operations in prime fields

– operations in binary extension fields



cFA-based cell architecture [3]

• Fine-grained reconfigurable architecture

• Matrix of configurable Full Adder (cFA) cells

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018. 

cFA-based cell architecture [3]

• Fine-grained reconfigurable architecture

• Matrix of configurable Full Adder (cFA) cells

• One cFA (with 6 inputs and 2 outputs) can be programmed to 8 functions
– 8 functions are available in most standard cell libraries  re-use ASIC synthesis tools

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018. 



cFA-based cell architecture [3]

• 4 cFA cells and 4 flipflops are packed into one cFA slice

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018. 

cFA-based cell architecture [3]

• 4 cFA cells and 4 flipflops are packed into one cFA slice

• Interface: 3x6 inputs, 3x3 outputs
– Interface of cFA slice corresponds to interface of Xilinx slice  re-use Xilinx P&R tools

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018. 



cFA-based automated design flow [3]

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018. 

Results after synthesis and mapping

• TI = threshold implementation

• SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

• area (µm2) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology   

• conf: number of configuration bits
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• conf: number of configuration bits

similar speed



Results after synthesis and mapping

• TI = threshold implementation

• SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

• area (µm2) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology   

• conf: number of configuration bits

3x – 9x configuration memory decrease
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Target application platforms

• Embedded FPGAs (eFPGAs)
– Configurable logic integrated in ASICs
– Growing market (Achronix, Flex Logix, 

Menta)
– Size matters!

• Dedicated configurable crypto tiles in 
existing FPGAs
– Following the trend of adding 

dedicated features such as BRAM, DSP 
slices, microprocessors, fast carry 
chains,…

– Speed matters!

Questions?

• Thank you for your attention!


