Rethinking Secure FPGAs: Towards a Cryptography-friendly Configurable Cell Architecture and its Automated Design Flow

Nele Mentens, Edoardo Charbon, Francesco Regazzoni nele.mentens@kuleuven.be, edoardo.charbon@epfl.ch, regazzoni@alari.ch

Cryptarchi, 29 June 2018

Outline

- Configurable computing
 - What? Why? Why for crypto?
- Configurable computing for crypto – How?
- Target application platforms

Outline

- Configurable computing - What? Why? Why for crypto?
- Configurable computing for crypto – How?
- Target application platforms

Configurable computing What?

Configurable computing platforms are hardware platforms to which changes in the datapath can be applied in addition to changes in the control flow

Configurable computing What?

FPGAs are the most widely used configurable computing platforms

Configurable computing Why?

- Configurable computing platforms have
 - the flexibility of software,
 - the performance of hardware,
 - the energy efficiency of hardware.

Configurable computing Why for crypto?

- Minimize the overhead of crypto in terms of performance and area/energy efficiency
- Provide cryptographic agility, i.e. the ability of cryptographic implementations to be upgraded or updated depending on newly detected vulnerabilities or changing standards

Outline

- Configurable computing

 What? Why? Why for crypto?
- Configurable computing for crypto How?
- Target application platforms

Configurable computing for crypto How?

- Cryptographic algorithms
- Cryptographic algorithms on commercial FPGAs
- Crypto-oriented configurable hardware

Cryptographic algorithms

- Symmetric-key cryptography:
 - bit permutation
 - rotation
 - addition modulo 2ⁿ (in ARX-based ciphers)
 - addition modulo 2, i.e. exclusive OR (XOR)
 - substitution box (S-box)
 - quadratic functions (for threshold implementations)

 $\mathsf{f}(\mathsf{x},\mathsf{y},\mathsf{z},\mathsf{w}) = \mathsf{a}_0 \oplus \mathsf{a}_1 \mathsf{x} \oplus \mathsf{a}_2 \mathsf{y} \oplus \mathsf{a}_3 \mathsf{z} \oplus \mathsf{a}_4 \mathsf{w} \oplus \mathsf{a}_{12} \mathsf{x} \mathsf{y} \oplus \mathsf{a}_{13} \mathsf{x} \mathsf{z} \oplus \mathsf{a}_{14} \mathsf{x} \mathsf{w} \oplus \mathsf{a}_{23} \mathsf{y} \mathsf{z} \oplus \mathsf{a}_{24} \mathsf{y} \mathsf{w} \oplus \mathsf{a}_{34} \mathsf{z} \mathsf{w}$

- Public-key cryptography:
 - operations in prime fields
 - operations in binary extension fields

Commercial FPGAs

Commercial FPGAs ABCD 10, 1 0 1 1 1 0 0 0 - Z 1 <0 10, с – $Z = \overline{C}.D$ D

Commercial FPGAs

Commercial FPGAs

- Besides lookup tables and routing elements, FPGAs also contain:
 - distributed and centralized storage (BRAM),
 - DSP blocks,
 - fast carry chains,
 - high-speed I/O,
 - clock management blocks.

Crypto algorithms on commercial FPGAs

- Symmetric-key cryptography:
 - bit permutation
 - rotation
 - addition modulo 2ⁿ (in ARX-based ciphers)
 - addition modulo 2, i.e. exclusive OR (XOR)
 - substitution box (S-box)
 - quadratic functions (for threshold implementations) $f(x,y,z,w) = a_0 \oplus a_1 x \oplus a_2 y \oplus a_3 z \oplus a_4 w \oplus a_{12} x y \oplus a_{13} x z \oplus a_{14} x w \oplus a_{23} y z \oplus a_{24} y w \oplus a_{34} z w$
- Public-key cryptography:
 - operations in prime fields
 - operations in binary extension fields

Crypto algorithms on commercial FPGAs

- Symmetric-key cryptography:
 - bit permutation \rightarrow routing
 - rotation \rightarrow routing
 - addition modulo 2^n (in ARX-based ciphers) \rightarrow fast carry chains
 - addition modulo 2, i.e. exclusive OR (XOR) \rightarrow LUTs
 - substitution box (S-box) \rightarrow LUTs, BRAM
 - quadratic functions (for threshold implementations) \rightarrow LUTs f(x,y,z,w) = a₀ \oplus a₁x \oplus a₂y \oplus a₃z \oplus a₄w \oplus a₁₂xy \oplus a₁₃xz \oplus a₁₄xw \oplus a₂₃yz \oplus a₂₄yw \oplus a₃₄zw
- Public-key cryptography:
 - operations in prime fields → DSP blocks, fast carry chains
 - operations in binary extension fields \rightarrow LUTs

Crypto-oriented configurable hardware

Solutions consist of coarse-grained configurable HW architectures (combined with SW programmability) or fine-grained configurable HW architectures

PipeRench [1]

- Coarse-grained reconfigurable architecture
 - Parallel stripes of processing elements with pipelining registers in between
- 6 (unprotected) block ciphers evaluated
- 0.25 µm technology
- 2x-12x speedup over microprocessors
- No comparison to FPGAs
- Dedicated compiler with Dataflow Intermediate Language (DIL) as an input

[1] R. Taylor and S. Goldstein, "A high-performance flexible architecture for cryptography", CHES 1999.

COBRA [2]

- Coarse-grained reconfigurable architecture
 - Configurable cells with 32-bit buses
- 3 (unprotected) block ciphers evaluated
- 0.35 µm TSMC technology
- Speedup over microprocessors
- Inferior performance compared to FPGAs
- VLIW assembler with COBRA-specific assembly language as an input

[2] A. Elbirt and C. Paar, "An instruction-level distributed processor for symmetric-key cryptography", IEEE TPDS 2005.

What's the problem?

How can we do better?

- 1. Be lazy, why work if we can (re-)use the efforts of others
 - No new design tools → rely on the decades of experience of EDA companies

How can we do better?

- 1. Be lazy, why work if we can (re-)use the efforts of others
 - No new design tools → rely on the decades of experience of EDA companies
- 2. Maximize productivity
 - No new design languages/input \rightarrow use VHDL, Verilog, HLS

How can we do better?

- 1. Be lazy, why work if we can (re-)use the efforts of others
 - No new design tools → rely on the decades of experience of EDA companies
- 2. Maximize productivity
 - No new design languages/input \rightarrow use VHDL, Verilog, HLS
- 3. Optimize efficiency
 - Area (= cost), performance

Cryptographic algorithms

- Symmetric-key cryptography:
 - bit permutation
 - rotation
 - addition modulo 2ⁿ (in ARX-based ciphers)
 - $S = A \oplus B \oplus C_{in}$ $C_{out} = AB + (A+B)C_{in} = AB \oplus AC_{in} \oplus BC_{in}$
 - addition modulo 2, i.e. exclusive OR (XOR)
 - substitution box (S-box)
 - quadratic functions (for threshold implementations)

 $\mathsf{f}(\mathsf{x},\mathsf{y},\mathsf{z},\mathsf{w}) = \mathsf{a}_0 \oplus \mathsf{a}_1 \mathsf{x} \oplus \mathsf{a}_2 \mathsf{y} \oplus \mathsf{a}_3 \mathsf{z} \oplus \mathsf{a}_4 \mathsf{w} \oplus \mathsf{a}_{12} \mathsf{x} \mathsf{y} \oplus \mathsf{a}_{13} \mathsf{x} \mathsf{z} \oplus \mathsf{a}_{14} \mathsf{x} \mathsf{w} \oplus \mathsf{a}_{23} \mathsf{y} \mathsf{z} \oplus \mathsf{a}_{24} \mathsf{y} \mathsf{w} \oplus \mathsf{a}_{34} \mathsf{z} \mathsf{w}$

- Public-key cryptography:
 - operations in prime fields
 - operations in binary extension fields

cFA-based cell architecture [3]

- Fine-grained reconfigurable architecture
- Matrix of configurable Full Adder (cFA) cells

[3] N. Mentens, E. Charbon, and F. Regazzoni, "Rethinking Secure FPGAs: Towards a Cryptographyfriendly Configurable Cell Architecture and its Automated Design Flow", accepted at FCCM 2018.

- Fine-grained reconfigurable architecture
- Matrix of configurable Full Adder (cFA) cells
- One cFA (with 6 inputs and 2 outputs) can be programmed to 8 functions
 8 functions are available in most standard cell libraries → re-use ASIC synthesis tools

[3] N. Mentens, E. Charbon, and F. Regazzoni, "Rethinking Secure FPGAs: Towards a Cryptographyfriendly Configurable Cell Architecture and its Automated Design Flow", accepted at FCCM 2018.

cFA-based cell architecture [3]

• 4 cFA cells and 4 flipflops are packed into one cFA slice

[3] N. Mentens, E. Charbon, and F. Regazzoni, "Rethinking Secure FPGAs: Towards a Cryptographyfriendly Configurable Cell Architecture and its Automated Design Flow", accepted at FCCM 2018.

cFA-based cell architecture [3]

- 4 cFA cells and 4 flipflops are packed into one cFA slice
- Interface: 3x6 inputs, 3x3 outputs
 - − Interface of cFA slice corresponds to interface of Xilinx slice → re-use Xilinx P&R tools

[3] N. Mentens, E. Charbon, and F. Regazzoni, "Rethinking Secure FPGAs: Towards a Cryptographyfriendly Configurable Cell Architecture and its Automated Design Flow", accepted at FCCM 2018.

cFA-based automated design flow [3]

[3] N. Mentens, E. Charbon, and F. Regazzoni, "Rethinking Secure FPGAs: Towards a Cryptographyfriendly Configurable Cell Architecture and its Automated Design Flow", accepted at FCCM 2018.

Results after synthesis and mapping

cipher	Xilinx					cFA array			
	SLICEL	SLICEM	area	critical	conf	cFA	area	critical	conf
				path				path	
AES-128	404	0	179,053	4.95	105,040	624	27,886	4.97	14,976
PRESENT-80-D3	70	0	31,024	1.65	18,200	190	8,491	0.95	4,560
PRESENT-80-D2	74	0	32,797	1.65	19,240	139	6,212	1.64	3,336
SPECK-128/128	130	0	57,616	5.99	33,800	294	13,139	9.91	7,056
NOEKEON	168	0	74,458	3.30	43,680	288	12,871	2.41	6,912
KTANTAN-64	80	0	35,456	2.2	20,800	119	5,318	1.95	2,856
AES-128-TI	2,076	120	1,092,679	2.2	582,640	3,058	136,656	1.54	73,392
PRESENT-80-TI	350	0	155,120	1.65	91,000	638	28,511	1.01	15,312
SPECK-128/128-TI	436	0	193,235	1.10	113,360	1556	69,535	1.33	37,344
NOEKEON-TI	846	0	374,947	2.75	219,960	952	42,543	2.12	22,848

• TI = threshold implementation

SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

• area (μm²) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology

conf: number of configuration bits

Results after synthesis and mapping

cipher			Xilinx			cFA array				
	SLICEL	SLICEM	area	critical	conf	cFA	area	critical	conf	
				path				path		
AES-128	404	0	179,053	4.95	105,040	624	27,886	4.97	14,976	
PRESENT-80-D3	70	0	31,024	1.65	18,200	190	8,491	0.95	4,560	
PRESENT-80-D2	74	0	32,797	1.65	19,240	139	6,212	1.64	3,336	
SPECK-128/128	130	0	57,616	5.99	33,800	294	13,139	9.91	7,056	
NOEKEON	168	0	74,458	3.30	43,680	288	12,871	2.41	6,912	
KTANTAN-64	80	0	35,456	2.2	20,800	119	5,318	1.95	2,856	
AES-128-TI	2,076	120	1,092,679	2.2	582,640	3,058	136,656	1.54	73,392	
PRESENT-80-TI	350	0	155,120	1.65	91,000	638	28,511	1.01	15,312	
SPECK-128/128-TI	436	0	193,235	1.10	113,360	1556	69,535	1.33	37,344	
NOEKEON-TI	846	0	374,947	2.75	219,960	952	42,543	2.12	22,848	

3x – 9x area decrease

• TI = threshold implementation

SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

- area (μm^2) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology

• conf: number of configuration bits

Results after synthesis and mapping

	similar speed											
								-				
cipher			Xilinx				cFA	array	У			
	SLICEL	SLICEM	area	critical	conf	cFA	area	critical	conf			
				path				path				
AES-128	404	0	179,053	4.95	105,040	624	27,886	4.97	14,976			
PRESENT-80-D3	70	0	31,024	1.65	18,200	190	8,491	0.95	4,560			
PRESENT-80-D2	74	0	32,797	1.65	19,240	139	6,212	1.64	3,336			
SPECK-128/128	130	0	57,616	5.99	33,800	294	13,139	9.91	7,056			
NOEKEON	168	0	74,458	3.30	43,680	288	12,871	2.41	6,912			
KTANTAN-64	80	0	35,456	2.2	20,800	119	5,318	1.95	2,856			
AES-128-TI	2,076	120	1,092,679	2.2	582,640	3,058	136,656	1.54	73,392			
PRESENT-80-TI	350	0	155,120	1.65	91,000	638	28,511	1.01	15,312			
SPECK-128/128-TI	436	0	193,235	1.10	113,360	1556	69,535	1.33	37,344			
NOEKEON-TI	846	0	374,947	2.75	219,960	952	42,543	2.12	22,848			

• TI = threshold implementation

• SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

• area (μm²) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology

conf: number of configuration bits

Results after synthesis and mapping

3x – 9x configuration memory decrease

						_				
cipher			Xilinx			cFA array				
	SLICEL	SLICEM	area	critical	conf	cFA	area	critical	conf	
				path				path		
AES-128	404	0	179,053	4.95	105,040	624	27,886	4.97	14,976	
PRESENT-80-D3	70	0	31,024	1.65	18,200	190	8,491	0.95	4,560	
PRESENT-80-D2	74	0	32,797	1.65	19,240	139	6,212	1.64	3,336	
SPECK-128/128	130	0	57,616	5.99	33,800	294	13,139	9.91	7,056	
NOEKEON	168	0	74,458	3.30	43,680	288	12,871	2.41	6,912	
KTANTAN-64	80	0	35,456	2.2	20,800	119	5,318	1.95	2,856	
AES-128-TI	2,076	120	1,092,679	2.2	582,640	3,058	136,656	1.54	73,392	
PRESENT-80-TI	350	0	155,120	1.65	91,000	638	28,511	1.01	15,312	
SPECK-128/128-TI	436	0	193,235	1.10	113,360	1556	69,535	1.33	37,344	
NOEKEON-TI	846	0	374,947	2.75	219,960	952	42,543	2.12	22,848	

• TI = threshold implementation

SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

- area (μm^2) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology

• conf: number of configuration bits

Outline

- Configurable computing
 - What? Why? Why for crypto?
- Configurable computing for crypto – How?
- Target application platforms

Target application platforms

- Embedded FPGAs (eFPGAs)
 - Configurable logic integrated in ASICs
 - Growing market (Achronix, Flex Logix, Menta)
 - Size matters!
- Dedicated configurable crypto tiles in existing FPGAs
 - Following the trend of adding dedicated features such as BRAM, DSP slices, microprocessors, fast carry chains,...
 - Speed matters!

Questions?

• Thank you for your attention!