
Rethinking Secure FPGAs: Towards a
Cryptography-friendly Configurable Cell

Architecture and its Automated Design Flow

Nele Mentens, Edoardo Charbon, Francesco Regazzoni

nele.mentens@kuleuven.be, edoardo.charbon@epfl.ch, regazzoni@alari.ch

Cryptarchi, 29 June 2018

Outline

• Configurable computing

– What? Why? Why for crypto?

• Configurable computing for crypto

– How?

• Target application platforms

Outline

• Configurable computing

– What? Why? Why for crypto?

• Configurable computing for crypto

– How?

• Target application platforms

ASIC FPGA ASIP DSP µP

Energy efficiency

High Low

Programmability

Low High

Area efficiency

HW SWHW-SW

Configurable computing
What?

Configurable computing platforms are hardware platforms to which changes in
the datapath can be applied in addition to changes in the control flow

Configurable computing
What?

ASIC FPGA ASIP DSP µP

High Low

Programmability

Low High

Area efficiency

HW SWHW-SW

FPGAs are the most widely used configurable computing platforms

Energy efficiency

Configurable computing
Why?

• Configurable computing platforms have

– the flexibility of software,

– the performance of hardware,

– the energy efficiency of hardware.

Configurable computing
Why for crypto?

• Minimize the overhead of crypto in terms of
performance and area/energy efficiency

• Provide cryptographic agility, i.e. the ability of
cryptographic implementations to be upgraded or
updated depending on newly detected vulnerabilities
or changing standards

Outline

• Configurable computing

– What? Why? Why for crypto?

• Configurable computing for crypto

– How?

• Target application platforms

Configurable computing for crypto
How?

• Cryptographic algorithms

• Cryptographic algorithms on commercial FPGAs

• Crypto-oriented configurable hardware

Cryptographic algorithms

• Symmetric-key cryptography:
– bit permutation

– rotation

– addition modulo 2n (in ARX-based ciphers)

– addition modulo 2, i.e. exclusive OR (XOR)

– substitution box (S-box)

– quadratic functions (for threshold implementations)
f(x,y,z,w) = a0a1xa2ya3za4wa12xya13xza14xwa23yza24ywa34zw

• Public-key cryptography:
– operations in prime fields

– operations in binary extension fields

Commercial FPGAs

configuration memory

FPGA fabric
(lookup tables)

Commercial FPGAs
A B C D

Z

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

1
0
0
1
1
1
0
1
1
1
0
0
0
1
1
0

Commercial FPGAs

0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0

A B C D

Z

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

C

D
Z = C.D

Commercial FPGAs

0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0

A B C D

Z

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Commercial FPGAs

configuration memory

FPGA fabric
(lookup tables + routing)

Commercial FPGAs

• Besides lookup tables and
routing elements, FPGAs
also contain:
– distributed and centralized

storage (BRAM),

– DSP blocks,

– fast carry chains,

– high-speed I/O,

– clock management blocks.

Crypto algorithms on commercial FPGAs

• Symmetric-key cryptography:
– bit permutation

– rotation

– addition modulo 2n (in ARX-based ciphers)

– addition modulo 2, i.e. exclusive OR (XOR)

– substitution box (S-box)

– quadratic functions (for threshold implementations)
f(x,y,z,w) = a0a1xa2ya3za4wa12xya13xza14xwa23yza24ywa34zw

• Public-key cryptography:
– operations in prime fields

– operations in binary extension fields

Crypto algorithms on commercial FPGAs

• Symmetric-key cryptography:
– bit permutation routing

– rotation routing

– addition modulo 2n (in ARX-based ciphers) fast carry chains

– addition modulo 2, i.e. exclusive OR (XOR) LUTs

– substitution box (S-box) LUTs, BRAM

– quadratic functions (for threshold implementations) LUTs
f(x,y,z,w) = a0a1xa2ya3za4wa12xya13xza14xwa23yza24ywa34zw

• Public-key cryptography:
– operations in prime fields DSP blocks, fast carry chains

– operations in binary extension fields LUTs

Energy efficiency

ASIC FPGA ASIP DSP µP

High Low

Programmability

Low High

Area efficiency

HW SWHW-SW

Crypto-oriented configurable hardware

Solutions consist of coarse-grained configurable HW architectures (combined
with SW programmability) or fine-grained configurable HW architectures

FPGA

PipeRench [1]

• Coarse-grained reconfigurable architecture
– Parallel stripes of processing elements with

pipelining registers in between

• 6 (unprotected) block ciphers evaluated

• 0.25 µm technology

• 2x-12x speedup over microprocessors

• No comparison to FPGAs

• Dedicated compiler with Dataflow
Intermediate Language (DIL) as an input

[1] R. Taylor and S. Goldstein, “A high-performance flexible architecture for cryptography”, CHES 1999.

COBRA [2]

[2] A. Elbirt and C. Paar, “An instruction-level distributed processor for symmetric-key cryptography”,
IEEE TPDS 2005.

• Coarse-grained reconfigurable
architecture
– Configurable cells with 32-bit buses

• 3 (unprotected) block ciphers
evaluated

• 0.35 µm TSMC technology

• Speedup over microprocessors

• Inferior performance compared to
FPGAs

• VLIW assembler with COBRA-specific
assembly language as an input

What’s the problem?

How can we do better?

1. Be lazy, why work if we can
(re-)use the efforts of others
– No new design tools  rely on

the decades of experience of
EDA companies

How can we do better?

1. Be lazy, why work if we can
(re-)use the efforts of others
– No new design tools  rely on

the decades of experience of
EDA companies

2. Maximize productivity
– No new design languages/input
 use VHDL, Verilog, HLS

How can we do better?

1. Be lazy, why work if we can
(re-)use the efforts of others
– No new design tools  rely on

the decades of experience of
EDA companies

2. Maximize productivity
– No new design languages/input
 use VHDL, Verilog, HLS

3. Optimize efficiency
– Area (= cost), performance

Cryptographic algorithms

• Symmetric-key cryptography:
– bit permutation

– rotation

– addition modulo 2n (in ARX-based ciphers)

S = ABCin Cout = AB + (A+B)Cin = ABACinBCin

– addition modulo 2, i.e. exclusive OR (XOR)

– substitution box (S-box)

– quadratic functions (for threshold implementations)

f(x,y,z,w) = a0a1xa2ya3za4wa12xya13xza14xwa23yza24ywa34zw

• Public-key cryptography:
– operations in prime fields

– operations in binary extension fields

cFA-based cell architecture [3]

• Fine-grained reconfigurable architecture

• Matrix of configurable Full Adder (cFA) cells

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018.

cFA-based cell architecture [3]

• Fine-grained reconfigurable architecture

• Matrix of configurable Full Adder (cFA) cells

• One cFA (with 6 inputs and 2 outputs) can be programmed to 8 functions
– 8 functions are available in most standard cell libraries  re-use ASIC synthesis tools

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018.

cFA-based cell architecture [3]

• 4 cFA cells and 4 flipflops are packed into one cFA slice

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018.

cFA-based cell architecture [3]

• 4 cFA cells and 4 flipflops are packed into one cFA slice

• Interface: 3x6 inputs, 3x3 outputs
– Interface of cFA slice corresponds to interface of Xilinx slice  re-use Xilinx P&R tools

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018.

cFA-based automated design flow [3]

[3] N. Mentens, E. Charbon, and F. Regazzoni, “Rethinking Secure FPGAs: Towards a Cryptography-
friendly Configurable Cell Architecture and its Automated Design Flow”, accepted at FCCM 2018.

Results after synthesis and mapping

• TI = threshold implementation

• SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

• area (µm2) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology

• conf: number of configuration bits

Results after synthesis and mapping

• TI = threshold implementation

• SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

• area (µm2) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology

• conf: number of configuration bits

3x – 9x area decrease

Results after synthesis and mapping

• TI = threshold implementation

• SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

• area (µm2) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology

• conf: number of configuration bits

similar speed

Results after synthesis and mapping

• TI = threshold implementation

• SLICEL / SLICEM / cFA: number of Xilinx slices / cFa slices

• area (µm2) and critical path (ns): based on re-implemented Xilinx slices / cFA slices in NanGate 45nm technology

• conf: number of configuration bits

3x – 9x configuration memory decrease

Outline

• Configurable computing

– What? Why? Why for crypto?

• Configurable computing for crypto

– How?

• Target application platforms

Target application platforms

• Embedded FPGAs (eFPGAs)
– Configurable logic integrated in ASICs
– Growing market (Achronix, Flex Logix,

Menta)
– Size matters!

• Dedicated configurable crypto tiles in
existing FPGAs
– Following the trend of adding

dedicated features such as BRAM, DSP
slices, microprocessors, fast carry
chains,…

– Speed matters!

Questions?

• Thank you for your attention!

