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Quantum computing and cryptography

Current cryptography is based on the hardness of the integer
factorization and discrete logarithm problems

Shor’s algorithm is a quantum algorithm that can solve these
problems in polynomial time

Quantum computer will break current cryptography

Cryptography based on lattice problems is presumable resistant
against quantum attacks
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Lattice-based cryptography

A lattice L is a discrete set of points in the space Rn with periodic
structure.
Foundations problems are Shortest Vector Problem and Closes
Vector Problem
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Physical attacks

Timing analysis
Power analysis
Fault attacks
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Fault attacks

1 Malicious injection of a fault in a device running a cryptographic
algorithm

2 Exploitation of the induced faulty behavior to gather information
about the secret values
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Categories and properties of fault attacks

Non-invasive
Semi-invasive
Invasive

Granularity: bit, byte, word, etc.
Modification: stuck at, flip, random
Duration: Transient, permanent, destructive
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Attack models considered in this work
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Definition

RLWE (Ring Learning With Errors) encryption is a cryptosystem
based on the Learning With Errors problem on Ring. It is
parameterized by the length N , an integer Q and a distribution with
variance σ

The Number Theoretic Transform is a Fourier transform performed
in a ring instead of C

It speeds up the RLWE encryption because it reduces the complexity
of the polynomial multiplication from O(n2) to O(n log n)
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Key generation, Encryption, Decryption
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Key generation

Create a weak key for which the system still works

pk = ar2, sk = r2, r1 = 0 – It is easy
to compute r2 from pk.
pk = r1, sk = 0n – As in this case the
secret key consists of zeros, the scheme
can be easily broken.
pk = r1, sk = r2; pk = random,
sk = r2; pk = p, sk = random;
pk = 0, sk = r2 – These faults
produce an incorrect result, thus would
not be exploitable by an attacker.
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Encryption

Recover the encrypted message

c1 = ae1, c2 = pke1 + e3 + enc(m),
e2 = 0 – The message can be
recovered by computing e1 from c1.
With e1, e3 can be eliminated with a
threshold function.
c1 = e2, c2 = e3 + enc(m), e1 = 0 –
The message can be recovered from c2
eliminating the e3 with a threshold
function.
c1 = ae1 + e2, c2 = e3 + enc(m) – e3
can be eliminated with a threshold
function.
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Encryption

Recover the encrypted message

c1 = e2, c2 = pke1 + e3 + enc(m) –
This situation destroys the encryption
scheme.
c1 = random, c2 = pke1+e3+enc(m)
– This case is a generalization of the
previous one and therefore leads to the
same conclusion.
c1 = ae1 + e2, c2 = pke1 + e3 or
c1 = ae1 + e2, c2 = random – This
destroys information about the
message.
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Decryption

Recover the secret key

Zeroing the key.
Zeroing the ciphertext.
Zeroing during the NTT.
Randomization of the key.
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Zeroing the key

for (int s=0;s<n;s++){ ** Skipped
for (int c=1;c<n;c++){

idx=(s+c) % n;
value=sk[s]*c1[c];
if(s+c>n){

res[idx ]=(res[idx]-val) % q;
}else{

res[idx ]=(res[idx]+val) % q;
}

}
}

For j = (c+ s) mod n we that
(sk ∗ c1)(j) is equal to
n−1∑
s=0

n−1∑
c=0

(sk(s) · c1(c)) mod q

sk′1 = [A 0 0 ... 0]
sk′2 = [A B 0 ... 0]
· · ·
sk recovered completely
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Zeroing the cipher

for (int c=1;c<n;c++){** Skipped
for (int s=0;s<n;s++){

idx=(s+c) % n;
value=sk[s]*c1[c];
if(s+c>n){

res[idx ]=(res[idx]-val) % q;
}else{

res[idx ]=(res[idx]+val) % q;
}

}
}

For j = (c+ s) mod n we that
(sk ∗ c1)(j) is equal to
n−1∑
s=0

n−1∑
c=0

(sk(s) · c1(c)) mod q

c1 = [A 0 0 ... 0]
c1 = [A B 0 ... 0]
· · ·
This is equivalent to a
cipher-chosen attack
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Zeroing in NTT

In the NTT domain, polynomial multiplication corresponds to
component-wise product between vectors.
In this case, zeroing a section of the key is equivalent to zeroing the
same section of the ciphertext c1
mes′(i) = Decode(Offset+ Const · Sk(m) + c2(i)

For every component, there is a linear equation with known offset
and known slope.
With 1 equation is it possible to constrained the range of values for 1
component. With n equation is possible to recover the complete key
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Summary of the attacks

Phase Fault Result
Key Generation r1 = 0 Weak key generated
Key Generation r2 = 0 Weak key generated
Encryption e1 = 0 Message recovery
Encryption e2 = 0 Message recovery
Encryption pke1 = 0 Message recovery
Decryption Zeroing secret key Secret key recovery
Decryption Zeroing the cipher text Secret key recovery
Decryption Zeroing during the NTT Secret key recovery
Decryption Randomization of the

key
Secret key recovery
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Countermeasures

Measuring statistics
Redundancy loop
Protection against CCA2 attacks
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Conclusions

We systematically analyzed the vulnerability of R-LWE to fault
attacks.

Attacks on the decryption are more attractive for attackers because
it allows to recovery the secret key.

R-LWE can be attacked using fault attacks.

Some fault attacks are comparable to chosen-ciphertext attacks.
Thus, the same countermeasure can applied for both.
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Questions

Thank you for your attention
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