
CryptArchi2019 June 23-26 2019 Prague

P a g e 1 | 6

Replacing error correction by key fragmentation and search engines
To generate error-free cryptographic keys from PUFs

Bertrand Cambou; Christopher Philabaum; Duane Booher
School of Informatics, Computing, and Cyber Systems
Northern Arizona University, Flagstaff, Arizona, USA

Bertrand.cambou@nau.edu; cp723@nau.edu; Duane.booher@nau.edu

Abstract: Rather than consuming computing power at the client level to
correct erratic cryptographic keys generated by physical unclonable functions,
search engines at the server level can independently uncover matching keys with
no correcting schemes. However, when the defect density is high, the latencies
associated with such search engines can be prohibitive. We are proposing a
fragmentation scheme to significantly reduce the latencies, and to find matching
cryptographic keys, even when the error rates are greater than 15%. A predictive
model that anticipates latencies is proposed, and validated experimentally, with
commercially available 32Kbyte SRAM-based physical unclonable functions, a
microcontroller development board, and using a Window-10 PC as “server”.

1- Introduction and background information

Physical Unclonable Functions (PUFs) [1-6], the fingerprints of microelectronic components, are
subject to aging, temperature drifts, electromagnetic interactions, and various environmental effects.
Typically, this produces 2-10% error rates between the initial readings of the PUFs that are stored as
references, and the responses generated by these PUFs. Error correcting (ECC) algorithms need to correct
100% of all errors, to generate usable cryptographic keys from the PUFs, as single-bit mismatches are not
acceptable [7-11]. ECC algorithms use helper data from the transmitting party, and iterative methods such
as fuzzy extractors by the receiving party, which consume computing power, and could thereby leak
information to the opponents. Response based cryptographic methods (RBC) eliminate the need to use
error correction at the client level, as it generates cryptographic keys directly from the un-corrected
responses of the PUFs [12-13]. This technology relies on the implementation of an efficient search engine,
driven by a secure server interacting with the network of client devices, which finds the uncorrected PUF
responses, rather than correcting them.

The RBC matching algorithm compares the cipher text sent by the client device with the cipher text
computed by the server. The cipher text of the client device is computed with the key directly generated
from the responses of the PUF. The cipher text of the server is computed with the key generated from the
PUF challenges that are stored in a look up table as reference. If the two ciphers are different, the server
generates cipher texts from all keys having a Hamming distance of one from the PUF challenges, and
compares them to the cipher text transmitted by the client device from the responses. The process is
iterated with keys having higher Hamming distances to find the matching cipher. The RBC algorithm is
efficient when the error rates are small enough. In this work, we use Advanced Encryption Standard (AES)
to generate the cipher texts from 256-bit long cryptographic keys. The latencies of the RBC search engines
are too slow to process PUFs with error rates higher than 1%, which is the case of most PUFs without other
correcting methods.

mailto:Bertrand.cambou@nau.edu
mailto:cp723@nau.edu
mailto:Duane.booher@nau.edu

CryptArchi2019 June 23-26 2019 Prague

P a g e 2 | 6

2- Fragmentation of the cryptographic keys

In order to enhance effectiveness at higher error rates, we propose the fragmentation of the keys
generated by the PUF into sub-keys, also 256-bit long, which are padded with known random numbers.

In a fragmentation by two, the first sub-key is generated by keeping the first 128 bits of the 256-bit
long key generated by the PUF, filled with a 128-bit long pad containing no errors. The last 128 bits of the
PUF, also combined with a 128-bit long pad, generate the second sub-key. Statistically, the two sub-keys
show error rates that are half those of full key error rates. The client device sends thereby two cipher texts
generated by the two sub-keys. The RBC search engine can process the resulting two ciphers much faster
to find the erratic key generated by the PUF. For example: If the 256-long keys contain 4 errors, and the
latency of one encryption and matching cycle is τo , the average latency τ of the RBC search is given by:

τ = τo + τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟏𝟏 � + τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 � + τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟑𝟑 � + τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟒𝟒 �/2 eq1

τ ≈ τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟒𝟒 �/2 = 8.74 107 τo eq2

Assuming that the four errors are evenly distributed between the two sub-keys, the latency τ2 of
the RBC search, with a fragmentation by two is given by:

τ2 ≈ 2 x τo �𝟏𝟏𝟏𝟏𝟏𝟏𝟐𝟐 �/2 = 8.13 103 τo eq3

Assuming that the first sub-key has three errors and that the second sub-key has one error, the
latency τ2 of the RBC search, with a fragmentation by two is given by:

τ2 ≈ τo �𝟏𝟏𝟏𝟏𝟏𝟏𝟑𝟑 �/2 = 1.7 105 τo eq4

Assuming that the first sub-key has four errors, and that the second key is error free, the latency τ2
of the RBC search with a fragmentation by two is given by:

τ2 ≈ τo �𝟏𝟏𝟏𝟏𝟏𝟏𝟒𝟒 �/2 = 1.7 105 τo = 5.3 106 τo eq5

Assuming a normal statistical distribution of the four errors of the main key into 2/2, 3/1, and 4/0,
the average latency τ2 , can be computed from eq3, eq4, and eq5, and is much smaller than τ.

In a fragmentation by k ∈ {2, 4, 8, 16, 32}, the first sub-key is generated by keeping the first 256/k
bits of the key generated by the PUF, filled with a (256-256/k)-bit long pad containing no errors. The
subsequent k sub-keys are generated in a similar ways, also with a (256-256/k)-bit long pad. Assuming that
the four errors are evenly distributed between the k sub-keys, the latency τk of the RBC search with a
fragmentation by k is given by:

τ ≈ k τ0 �𝟐𝟐𝟐𝟐𝟐𝟐/𝒌𝒌
𝒂𝒂/𝒌𝒌 �/2 , and D = a/256 eq6

a is the Hamming distance between the 256-bit long keys generated by the responses, and the keys
generated by the challenges of the PUF stored by the server; D is the average PUF error rate. The final
model assumes a normal distribution of the Hamming distance a among the k sub-keys. Shown in Fig.1 is
an estimate of the average latencies of the RBC, using the model, as a function of the level of key
fragmentation, and PUF error rates. Based on this model, an RBC with fragmentation by 8 is appropriate
to handle PUFs with error rates in the 2 to 10% range, which is enough for most PUFs.

CryptArchi2019 June 23-26 2019 Prague

P a g e 3 | 6

Figure 1: Modelling of RBC latencies

3- Experimental validation

To validate experimentally the effectiveness of the RBC with fragmentation, we used commercially
available 32-Kbyte SRAM devices from Cypress semiconductor as PUFs. During enrollment, the SRAMs
were submitted to power-off-power-on cycles, and the resulting patterns were stored in look up tables.
About 50% of the flip-flop of the cells are mainly responding to such cycles as a “0” state, about 50% as a
“1” state. The typical error rates of such PUFs were observed in the 2 to 10% range. The error rates can be
reduced to 10-5 by cycling the SRAM multiple times during enrollment, and by eliminating the unstable cells.
The error rates can also be increased to 20% by leveraging natural physical variations.

WiFire development boards from Microchip were used to drive the SRAM PUFs. These boards
contain 200 MHz 32-bit RISC processors from ARM, ADC/DAC converters, 2MB flash, and 512KB RAM. The
embedded software and cryptographic protocols to extract 256-bit keys from the PUFs were written in C,
with software implementation of AES-256, and SHA-256. On the server side, Window 10 PCs powered by
Intel I7 quad core processors were used, they can process an AES cycle in about five microseconds. The
cryptographic protocol is randomly pointing at 256 cells in the PUF, every 2 seconds; the RBC search engine
operate with various levels of fragmentation, and PUF defect rates. The results of the experimental work
are summarized in Fig.2: in the first graph (a), the latencies are averaged over 10 queries at different levels
of PUF defect rates; in the second graph (b), the latencies are averaged over 100 queries.

 At very low defect densities, the quad-core processor of the PC faces delays due to the initialization
cycles, and the management of the multi-tasking operations of the PC. However, on relative terms, the
latencies at very low defect densities are proportional to the level of fragmentation: about 100ms without
fragmentation, and respectively 200ms, 400ms, 800ms, 1600ms with a fragmentation of 2, 4, 8, and 16. It
is always desirable to minimize the level of fragmentation to reduce computing power at the client level,
so fragmentation algorithms are not needed with error rates below 1%.

CryptArchi2019 June 23-26 2019 Prague

P a g e 4 | 6

Figure 2: Measurement of RBC latencies – (a) 10 cycles ; (b) 100 cycles

Results also show that above 1% PUF error rate, both modelling and experimental data are
consistent, and demonstrate the effectiveness of RBC with fragmentation. Shown in Table 1 are the back-
to-back comparisons of the level of acceptable errors when the latencies of the PC are kept below one
second. A fragmentation by eight sub-keys is optimum for the SRAM-based PUFs analyzed in this work. We
are noticing that the experimental results with 100 cycles, and a fragmentation by 8, are more favorable
than the modelling and the experimental results using only 10 cycles. This suggests that at higher defect
rates, the effectiveness of parallelization of the quad core, which is hard to simulate, is about 50% higher
than what we assumed in the model. However, the results are consistent at lower levels of fragmentation.

CryptArchi2019 June 23-26 2019 Prague

P a g e 5 | 6

Table 1: Levels of PUF error rates requiring a latency of one second

4- Conclusion

The suggested method to fragment PUF-generated keys, has the potential to enhance the
effectiveness of RBC algorithms, eliminate the need to use error-correcting methods, helper data, and
thereby simplifies PUF-based cryptographic protocols, and enhances security. Below 1% error rates, a
simple RBC algorithm without fragmentation is powerful enough, while a fragmentation by 8 can handle
error rates in the 10 to 12% range.

We see the need to complete this research work with additional crypto-analysis to highlight
possible weaknesses of the protocol under attack. We also see the need to validate the RBC algorithm
with various PUFs, to perform additional experimental work to refine the models and comprehend initial
latencies, and to predict and optimize parallel computing.

Finally, the deployment of the technology to industry will require the design of a custom secure
microcontroller, protecting the client devices from side channel analysis.

Acknowledgements

 The authors are thanking the students from NAU’s cybersecurity lab who contributed to this
work, in particular Vince Rodriguez, and Ian Burke.

CryptArchi2019 June 23-26 2019 Prague

P a g e 6 | 6

References:

1) Holcomb, D. E., W. P. Burleson, and K. Fu. 2008. “Power-up SRAM state as an Identifying Fingerprint
and Source of TRN”. IEEE Transaction on Computing, vol 57, No 11.

2) Chen, T. I. B., F. M. Willems, R. Maes, E. v. d. Sluis, and G. Selimis. 2017. "A Robust SRAM-PUF Key
Generation Scheme Based on Polar Codes". In arXiv:1701.07320 [cs.IT].

3) Prabhu, P., A. Akel, L. M. Grupp, W-K S. Yu, G. E. Suh, E. Kan, and S. Swanson. 2011. “Extracting Device
Fingerprints from Flash Memory by Exploiting Physical Variations”. In 4th international conference on
Trust and trustworthy computing.

4) Cambou, B., and M. Orlowski. 2016. “Design of Physical Unclonable Functions with ReRAM and ternary
states”. Cyber and Information Security Research Conference, CISR-2016, Oak Ridge, TN, USA.

5) Korenda, A., F. Afghah and B. Cambou. 2018. "A Secret Key Generation Scheme for Internet of Things
using Ternary-States ReRAM-based Physical Unclonable Functions". In International Wireless
Communications and Mobile Computing Conference (IWCMC 2018).

6) Gao, Y., D. Ranasinghe, S. Al-Sarawi, O. Kavehei, and D. Abbott. 2016. “Emerging Physical Unclonable
Functions with nanotechnologies”. IEEE, DOI:10.1109/ACCESS.2015.2503432.

7) Maes, R., P. Tuyls and I. Verbauwhede. 2009. "A Soft Decision Helper Data Algorithm for SRAM PUFs".
In 2009 IEEE International Symposium on Information Theory.

8) Boehm, H. M. 2010. “Error correction coding for physical unclonable functions”. In Austrochip-2010,
Workshop in Microelectronics.

9) Taniguchi, M., M. Shiozaki, H. Kubo and T. Fujino. 2013. "A stable key generation from PUF responses
with a Fuzzy Extractor for cryptographic authentications". In IEEE 2nd Global Conference on Consumer
Electronics (GCCE), Tokyo, Japan.

10) Delvaux, J., D. Gu, D. Schellekens and I. Verbauwhede. 2015. "Helper Data Algorithms for PUF- Kang,
H., Y. Hori, T. Katashita, M. Hagiwara and K. Iwamura. 2014. "Cryptographie key generation from PUF
data using efficient fuzzy extractors". In 16th International Conference on Advanced Communication
Technology, Pyeongchang, Korea.

11) Becker, G. T., A. Wild and T. Güneysu. 2015. "Security analysis of index-based syndrome coding for PUF-
based key generation". In 2015 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), Washington, DC.

12) Cambou, B., C. Philabaum, D. Duane Booher, and D. Telesca. “Response-based Cryptography Methods
with Physical Unclonable Functions”. Future of Information and Communication Conference, FICC-2019.

13) Cambou, B., “Unequally Powered Cryptography with PUFs for network of IoT”, Spring Simulation
Conference, SpringSim2019.

