
CryptArchi2019                              June 23-26 2019                            Prague 

P a g e  1 | 6 

 

Replacing error correction by key fragmentation and search engines 
To generate error-free cryptographic keys from PUFs 

Bertrand Cambou; Christopher Philabaum; Duane Booher 
School of Informatics, Computing, and Cyber Systems 
Northern Arizona University, Flagstaff, Arizona, USA 

Bertrand.cambou@nau.edu; cp723@nau.edu; Duane.booher@nau.edu 
 

Abstract: Rather than consuming computing power at the client level to 
correct erratic cryptographic keys generated by physical unclonable functions, 
search engines at the server level can independently uncover matching keys with 
no correcting schemes.  However, when the defect density is high, the latencies 
associated with such search engines can be prohibitive. We are proposing a 
fragmentation scheme to significantly reduce the latencies, and to find matching 
cryptographic keys, even when the error rates are greater than 15%. A predictive 
model that anticipates latencies is proposed, and validated experimentally, with 
commercially available 32Kbyte SRAM-based physical unclonable functions, a 
microcontroller development board, and using a Window-10 PC as “server”. 

 
1- Introduction and background information 

Physical Unclonable Functions (PUFs) [1-6], the fingerprints of microelectronic components, are 
subject to aging, temperature drifts, electromagnetic interactions, and various environmental effects. 
Typically, this produces 2-10% error rates between the initial readings of the PUFs that are stored as 
references, and the responses generated by these PUFs. Error correcting (ECC) algorithms need to correct 
100% of all errors, to generate usable cryptographic keys from the PUFs, as single-bit mismatches are not 
acceptable [7-11]. ECC algorithms use helper data from the transmitting party, and iterative methods such 
as fuzzy extractors by the receiving party, which consume computing power, and could thereby leak 
information to the opponents. Response based cryptographic methods (RBC) eliminate the need to use 
error correction at the client level, as it generates cryptographic keys directly from the un-corrected 
responses of the PUFs [12-13]. This technology relies on the implementation of an efficient search engine, 
driven by a secure server interacting with the network of client devices, which finds the uncorrected PUF 
responses, rather than correcting them.  

The RBC matching algorithm compares the cipher text sent by the client device with the cipher text 
computed by the server. The cipher text of the client device is computed with the key directly generated 
from the responses of the PUF. The cipher text of the server is computed with the key generated from the 
PUF challenges that are stored in a look up table as reference. If the two ciphers are different, the server 
generates cipher texts from all keys having a Hamming distance of one from the PUF challenges, and 
compares them to the cipher text transmitted by the client device from the responses. The process is 
iterated with keys having higher Hamming distances to find the matching cipher. The RBC algorithm is 
efficient when the error rates are small enough. In this work, we use Advanced Encryption Standard (AES) 
to generate the cipher texts from 256-bit long cryptographic keys. The latencies of the RBC search engines 
are too slow to process PUFs with error rates higher than 1%, which is the case of most PUFs without other 
correcting methods. 
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2- Fragmentation of the cryptographic keys 

In order to enhance effectiveness at higher error rates, we propose the fragmentation of the keys 
generated by the PUF into sub-keys, also 256-bit long, which are padded with known random numbers.  

In a fragmentation by two, the first sub-key is generated by keeping the first 128 bits of the 256-bit 
long key generated by the PUF, filled with a 128-bit long pad containing no errors. The last 128 bits of the 
PUF, also combined with a 128-bit long pad, generate the second sub-key. Statistically, the two sub-keys 
show error rates that are half those of full key error rates. The client device sends thereby two cipher texts 
generated by the two sub-keys. The RBC search engine can process the resulting two ciphers much faster 
to find the erratic key generated by the PUF. For example: If the 256-long keys contain 4 errors, and the 
latency of one encryption and matching cycle is τo , the average latency τ of the RBC search is given by:  

τ = τo + τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟏𝟏 � + τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 � + τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟑𝟑 � + τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟒𝟒 �/2                                                 eq1 

τ ≈ τo �𝟐𝟐𝟐𝟐𝟐𝟐𝟒𝟒 �/2  = 8.74 107 τo                                                                         eq2 

Assuming that the four errors are evenly distributed between the two sub-keys, the latency τ2 of 
the RBC search, with a fragmentation by two is given by: 

τ2 ≈ 2 x τo �𝟏𝟏𝟏𝟏𝟏𝟏𝟐𝟐 �/2 = 8.13 103 τo                                                               eq3 

Assuming that the first sub-key has three errors and that the second sub-key has one error, the 
latency τ2 of the RBC search, with a fragmentation by two is given by: 

τ2 ≈ τo �𝟏𝟏𝟏𝟏𝟏𝟏𝟑𝟑 �/2 = 1.7 105 τo                                                               eq4 

Assuming that the first sub-key has four errors, and that the second key is error free, the latency τ2 
of the RBC search with a fragmentation by two is given by: 

τ2 ≈ τo �𝟏𝟏𝟏𝟏𝟏𝟏𝟒𝟒 �/2 = 1.7 105 τo = 5.3 106 τo                                                            eq5 

Assuming a normal statistical distribution of the four errors of the main key into 2/2, 3/1, and 4/0, 
the average latency τ2 , can be computed from eq3, eq4, and eq5, and is much smaller than τ. 

In a fragmentation by k ∈ {2, 4, 8, 16, 32}, the first sub-key is generated by keeping the first 256/k 
bits of the key generated by the PUF, filled with a (256-256/k)-bit long pad containing no errors. The 
subsequent k sub-keys are generated in a similar ways, also with a (256-256/k)-bit long pad. Assuming that 
the four errors are evenly distributed between the k sub-keys, the latency τk of the RBC search with a 
fragmentation by k is given by:  

τ ≈ k τ0  �𝟐𝟐𝟐𝟐𝟐𝟐/𝒌𝒌
𝒂𝒂/𝒌𝒌 �/2  , and   D = a/256                                                         eq6 

a is the Hamming distance between the 256-bit long keys generated by the responses, and the keys 
generated by the challenges of the PUF stored by the server; D is the average PUF error rate. The final 
model assumes a normal distribution of the Hamming distance a among the k sub-keys. Shown in Fig.1 is 
an estimate of the average latencies of the RBC, using the model, as a function of the level of key 
fragmentation, and PUF error rates. Based on this model, an RBC with fragmentation by 8 is appropriate 
to handle PUFs with error rates in the 2 to 10% range, which is enough for most PUFs.  
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Figure 1: Modelling of RBC latencies 

3- Experimental validation 

To validate experimentally the effectiveness of the RBC with fragmentation, we used commercially 
available 32-Kbyte SRAM devices from Cypress semiconductor as PUFs.  During enrollment, the SRAMs 
were submitted to power-off-power-on cycles, and the resulting patterns were stored in look up tables. 
About 50% of the flip-flop of the cells are mainly responding to such cycles as a “0” state, about 50% as a 
“1” state.  The typical error rates of such PUFs were observed in the 2 to 10% range. The error rates can be 
reduced to 10-5 by cycling the SRAM multiple times during enrollment, and by eliminating the unstable cells. 
The error rates can also be increased to 20% by leveraging natural physical variations. 

WiFire development boards from Microchip were used to drive the SRAM PUFs. These boards 
contain 200 MHz 32-bit RISC processors from ARM, ADC/DAC converters, 2MB flash, and 512KB RAM. The 
embedded software and cryptographic protocols to extract 256-bit keys from the PUFs were written in C, 
with software implementation of AES-256, and SHA-256. On the server side, Window 10 PCs powered by 
Intel I7 quad core processors were used, they can process an AES cycle in about five microseconds. The 
cryptographic protocol is randomly pointing at 256 cells in the PUF, every 2 seconds; the RBC search engine 
operate with various levels of fragmentation, and PUF defect rates. The results of the experimental work 
are summarized in Fig.2: in the first graph (a), the latencies are averaged over 10 queries at different levels 
of PUF defect rates; in the second graph (b), the latencies are averaged over 100 queries. 

 At very low defect densities, the quad-core processor of the PC faces delays due to the initialization 
cycles, and the management of the multi-tasking operations of the PC. However, on relative terms, the 
latencies at very low defect densities are proportional to the level of fragmentation: about 100ms without 
fragmentation, and respectively 200ms, 400ms, 800ms, 1600ms with a fragmentation of  2, 4, 8, and 16. It 
is always desirable to minimize the level of fragmentation to reduce computing power at the client level, 
so fragmentation algorithms are not needed with error rates below 1%. 
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Figure 2: Measurement of RBC latencies – (a) 10 cycles ; (b) 100 cycles 

Results also show that above 1% PUF error rate, both modelling and experimental data are 
consistent, and demonstrate the effectiveness of RBC with fragmentation. Shown in Table 1 are the back-
to-back comparisons of the level of acceptable errors when the latencies of the PC are kept below one 
second. A fragmentation by eight sub-keys is optimum for the SRAM-based PUFs analyzed in this work. We 
are noticing that the experimental results with 100 cycles, and a fragmentation by 8, are more favorable 
than the modelling and the experimental results using only 10 cycles. This suggests that at higher defect 
rates, the effectiveness of parallelization of the quad core, which is hard to simulate, is about 50% higher 
than what we assumed in the model. However, the results are consistent at lower levels of fragmentation.  
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Table 1: Levels of PUF error rates requiring a latency of one second 

 

4- Conclusion 

The suggested method to fragment PUF-generated keys, has the potential to enhance the 
effectiveness of RBC algorithms, eliminate the need to use error-correcting methods, helper data, and 
thereby simplifies PUF-based cryptographic protocols, and enhances security. Below 1% error rates, a 
simple RBC algorithm without fragmentation is powerful enough, while a fragmentation by 8 can handle 
error rates in the 10 to 12% range. 

We see the need to complete this research work with additional crypto-analysis to highlight 
possible weaknesses of the protocol under attack. We also see the need to validate the RBC algorithm 
with various PUFs, to perform additional experimental work to refine the models and comprehend initial 
latencies, and to predict and optimize parallel computing. 

Finally, the deployment of the technology to industry will require the design of a custom secure 
microcontroller, protecting the client devices from side channel analysis.  
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