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B \Why IPM?
Higher concrete security level (security order at bit-level)
Backgrounds

Masking is the most popular countermeasure to protect cryptographic
implementations against side-channel analysis.

For Boolean masking, also named Perfect masking [CG18] with n shares in
K = F,« can be expressed in a coding format:

L= (Z1,...,%,) = <X+ZM¢,M2,M3,...,M,1> =XG+MH, (1)

=2

where G and H are generating matrix of C' and D, respectively.

G=(100 .. 0) ek
110 0
101 -0

H=| . . . e Knmxr
100 - 1
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B \Why IPM?
Inner Product Masking (IPM)

IPM was proposed by Balasch et al. [BFGV12, BFG15, BFG*17], where
random masks are involved by using Inner Product operation.

Let X € F,« denotes a field elements, L= (L1, Lo, ..., L,) with L; € F,.\{0}
denotes a vector with n elements. The secretis X = (L, Z) = >"" L: Z;.
Then IPM, also can be expressed in a coding format:

Z:(XJrZLiMi,Mg,Mg,...,Mn):XG+MH )
1=2
where G and H are generating matrix of C' and D, respectively, as follows.
G=(1 00 ... 0) eK"”™
L, 1 0 --- 0
Lz 0 1 --- 0
H=| . . . .| ek«
L, 0 0 --- 1
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I Dcfining parameters of codes

Definition 1 (Weight Enumerator Polynomial)

For a linear code D of parameters [n, !, dp],
Wp(X,Y) =) BX"'Y' (3)
i=0

where B; = |{d € D|wg(d) =i}| and wg is the Hamming weight function.

Example 2

e.g., for linear code [8,4,4], we have Wp(X,Y) = X® 4 14X*Y* + Y8, also
denoted as: [<0,1>,<4,14>,<8,1>]. Thus, we have Bo = 1, By = 14, Bs = 1.

Definition 3 (Dual Code)
The dual code of D, denoted as D*, is: D* = {z | Vd € D, (z,d) = 0}.

Recall that Z = X G + MH, where G and H are generating matrices of code
C and D, respectively. Thus the generating matrix of dual code D+ is

H' = (1,Ls, L3, ..., Ly).
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I Why IPM?

Higher concrete security level (security order at bit-level)

Numerical Calc
dg=1,Bg;=4
dj =2, By =4
—— dj=3,Bq=4
—— dg=4,B4;=14

Mutual information: /(£ + N; X)

PR E—— Y 2 > > % > B
Noise level: o2

Figure 1: Mutual information I[£ + N; X] between leakages (£ = wu (2))
and X in IPM.
From Fig. 1, obviously,
B Boolean masking’s security level is lower than IPM (Note that if
Lo = X° (= 1), the IPM is degraded to Boolean masking)
B |PM’s security depends on the choices of L;
B The security level is related to d5 as in [PGS*17, BFG*17, CG18]
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I Why IPM?

Higher concrete security level (security order at bit-level)

Numerical Calc
dg =2, Bgs=4
10 dg =2, Bg;=3
—— dj=2,Bg;=2
dg =2, Bgz=1

Mutual information: /(£ + N; X)

PR 2 > > 2 > B
Noise level: o2

Figure 2: Mutual information I[£ + N; X], using codes with the same d5.

But, even with the same dj;, we can see that:
® |PM with different codes have different security level
B d3 is not enough as a leakage metric
B Question: how to concretely characterize the security of IPM?
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Related Works

The state-of-the-art

Security order

Two kinds of security order d,, and d;, under probing model are:

® Word-level (k-bit) security order d.,: leakages of word-level
computation or data

B Bit-level security order ds: in practice, each bit of sensitive variable
can be investigated independently

In order to analyze the security order of IPM at bit-level, we introduce:

Sub-field representation

By using sub-field representation, we decompose F, into F% as
SubfieldRepresentation : (1, La,...,Lp)ok — (I, Lo, ..., Ly)2  (5)

So by sub-field representation, a (1 x n) vector (1, Lo, ..., L,) at word-level
is converted to (k x nk) matrix (Ix,Lo,...,L,) at bit-level.
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B The state-of-the-art

Table 1: Summaries of security analysis on IPM and DSM.

Security order | Code parameters Metrics Comments
Balasch et al. d _ MI Ml varies for
[BFG15] w different L vector
Omin (= d) was used
Wang et al. n men D
[WSY+16] dp dp Mi (the lowest key-dependent

statistical moment)

Poussier et al.

(PGS +17] dw, dp d5 M
Balasch et al. dod _ MI dpound (= dp) isin
[BFGT17] ws &b bound moment model
Claude et al. SR of optimal attack
[CG18] dw, d dp MI, SR [BgHRM]
An unified framework
This work duw, dp ds, Bdﬁ MI, SR, SNR | to analyze all IPM codes

by closed-form expression

~ Here d, dj, are word- and bit-level security order, respectively, and d,, = n — 1.
- Bit-level security order dj, equals to df; — 1 in [PGS*17], [CG18] and in this work.
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Concrete security level of IPM

SNR as a metric

SNRis a commonly used in side-channel analysis as a leakage metric.
Let
L=P(Z)+N

denotes the leakages where N denotes the independent noise, we have
Var(E(P(Z)+ N|X)) = Var(E(P(Z)|X))

and then define SNR as:

Var(E(L|X)) _ Var(E(P(Z)|X))

NR =
SNE Var(N) o?

. (6)

Let ﬁ(z) be the Fourier transform of P(z) defined as:

Definition 4 (Fourier Transformation)

The Fourier transformation of a pseudo-Boolean function P : F3 — R is
denoted by P : F7 — R, and defined as: P(z) =3, P(y)(—1)"".

FETTR A
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I concrete security level of IPM

Therefore, we have following theorem:

Theorem 5 (SNR of IPM)

For IPM scheme with Z = XG + MH, the SNR between secret X and

leakages is
9= 2n

SNR=2 - %" (ﬁ(x))2. 7)

xzeDL\{0}

Theorem 6 (Security order of IPM)

Ifd°P < dp, the attack fails with SNR= 0, thus the security order of IPM
scheme in bounded moment model is d = d5 — 1.

Therefore the security order is the minimum value of d° P such that
SNR # 0, where SN R is quantitative metric to quantify the leakages.

FETTR A
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I Concrete security level of IPM

Hamming weight leakage model

We use P(z) = wr(z)? as higher order leakage model. Clearly, the degree
of P is d°P = d. Thus we have following theorem for SNR.

Theorem 7 (SNR of IPM)

For SNR of the Hamming weight leakages with respect to secret variable X
which protected by IPM, we have

0 ifd°P < d
SNR = 2 8
4B, (%) ifd°P = db s
D 2D

Surprisingly, the SNR of IPM is quantitatively connected to d and Bdﬁ,
which is determined by selecting L = (L1, Lo, ..., Ly).

FEITIR
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I Mutual information as a metric

In the presence of noise N ~ N (0, 0?), the mutual information between the
noisy leakage £ + N and X can be developed using a Taylor’s expansion
[CDGT14]:

) al | X =) — ha(£))?
L+ N; X] ~ IHQZQd' Z - } (Va?“(ﬁ)-l—UQ;ld

zeFk

where k4 are order d cumulants [Car03].

The term Var(E(kq(L | X))) is null for d < dp, and equals Var(ua(L | X))
= Var(E(L | X)) for d = ds. Thus, under Hamming weight leakage

model, the mutual information can be developed at first order in 1/0“5 as:
dé!Bdﬁ 1

21n2-2295 4245
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I Mutual information as a metric

Noise variance: o2

Reduce B.
D

ML I(£L+ N; X)

Increase d

Figure 3: Two concomitant objectives to reduce the mutual information.

From Fig. 3, we can see that:

B the slope in the log-log representation of the M/ versus the noise
standard deviation is all the more steep as d is high, and

B the vertical offset is adjusted by Bdﬁ; the smaller it is the smaller the MI.
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N B Choosing optimal codes for IPM

Using d3 and B, as a unified evaluation framework

A unified evaluation framework for IPM

For IPM with Z = (X + >, LiM;, M2, Ms, ..., M,) = XG + MH, its
concrete security level can be characterized by two defining parameters d5
and By, where code D is generated by H.

Example 8

For n = 2 with Ly € F,4, by subfield representation:
B dp5 =2for Ly € {X"}fori e {0,1,2,3,12,13,14}
B d5 =3for Ly € {X'}foric {4,5,6,7,8,9,10,11}

In particular, for d5 = 2, we have:
B [PM with L, = X° ' [<0,1>,<2,4>,<4,6>,<6,4>,<8,1>]
B IPMwith L, = X', X'*:[<0,1>,<2,3>,<3,2>,<4,3>,<5,4>,<6,1>,<7,25]
B IPMwith Ly = X2, X!3:[<0,1>,<2,2>,<3,3>,<4,3>,<5,4>,<6,2>,<7,1>]
B |IPMwith L, = X3, X'2: [<0,1>,<2,1>,<3,4>,<4,3>,<5,4>,<6,3>]
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Choosing optimal codes for IPM

Using B, and d3 as a unified evaluation framework

Numerical Calc Approx Equ.31

Mutual information: /(£ + N; X)
s

—— dd=1,By=4  --- dj=1By=4
—— di=2,Bg=4  --- di=2,Bg=4
1074 dd=2,B4;=3 di=2,Bg;=3
107 —— di=2,Bg=2  --- di=2,Bg=2
1079 dg=2, By =1 di=2, By =1
oo | T 9=3.By=4  --- dg=3,By=4
—— di=3,Bg=3  --- di=3,Bg=3
0700 gi=4,B4=14 --- di=4,By=14

2—7 2—6 2—5 2—4 2—3 2—2 2—] 20 2] 22 23 24 25 26 27 28 29 2)0
Noise level: 02

Figure 4: Numerical calculation and approximation of mutual information
I[£ + N; X] between leakages and X in IPM.
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N B Choosing optimal codes for IPM

Using B, and d3 as a unified evaluation framework

By this unified evaluation framework, it is easy to select optimal codes for
IPM, which with the highest side-channel resistance.

Algorithm 1: Optimal Code Selection
Result: Optimized d3 and By,
Maximize d3;
if mean{B; < %} then
| goto 1;
else
L Minimize B, ;

a A W N =

6 return dp and B,y
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m Success rate as an attack metric

Practical security evaluation

Optimal Attack [BGHR14]

For each attack, the targeted variable is:

z = (wy(tqg +k+malo+ - +mnLy), wr(m2), wr(ms), ..., wn(mn))
for n-dimensional attack (e.g., Aftack _2D), and
z=wn(tg+k+malo+---+mnLyn) +wa(me) + wu(ms) + - - +wu(mn)

=z1+z+-+z2n
for 1-dimensional attack (e.g., Attack_1D).

The success rate is the metric for evaluating attacks on different codes (refer
to Appendix for attacks).

FETTR A
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B \What about the codes with the same d5?

B Seting-up:n=2,k=4, L, € {X°,..., X3}, T = 10,000, o = 1.50

Success Rates.

Attack 1D 10 Attack 2D
B e
0.8
o6
2
g
S04
— BKLC(GF(2), 8, 4) n — BKLC(GF(2), 8, 4)
— IPM with L2 = X~0 —— IPM with L2 = X~0
IPM with L2 = X~1 0.2 IPM with L2 = X~1
—— IPM with L2 = X~2 —— IPM with L2 = X~2
— IPM with L2 = X~3 — IPM with L2 = X~3
0.0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

For d, = 2, we have

IPM with L, = X°:
IPM with Lo = X!
IPM with L, = X2:

IPM with L, = X3:

BKLC(GF(2), 8, 4):

[<0,1>,<2,4>,<4,6>,<6,4>,<8,1>]
[<0,1>,<2,3>,<3,2>,<4,3>,<5,4>,<6,1>,<7,2>]
[<0,1>,<2,2>,<3,3>,<4,3>,<5,4>,<6,2>,<7,1>]
[<0,1>,<2,1>,<3,4>,<4,3>,<5,4>,<6,3>]
[<0,1>,<4,14>,<8,1>] ——Not IPM codes
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What about the codes with the same d;?
Codes with the same d3 while different B,y

» Seting-up: n = 2, [RBB, L € {X°,..., X"}, T = 10,000, ¢ = 1.50

Attack 1D Attack 2D

—— IPM with L2 = X~0 - —— IPMwith L2 = X~0

IPM with L2 = X~1 T IPM with L2 = X~1
—— IPM with 12 = X~2 Nt ] 0.81 — IPMwith L2 = X~2
— IPM with L2 = X~7 i — IPM with L2 = X~7

— IPMwith L2 = X"8 — IPMwith L2 = X8
—— BKLC(GF(2), 16, 8)
—— Nordstrom-Robinson code

0.6 1 — BKLC(GF(2), 16, 8)
— Nordstrom-Robinson code
v ;

f

Success Rates

Concerning d5, we have

IPM with Ly = X°: [<0,1>,<2,8>,<4,28>,<6,56>,<8,70>,...,<16,1>]
IPM with Ly = X': [<0,1>,<2,7>,<4,21>,<5,8>,<6,35>,. . .,<14,1>]
IPM with L, = X7: [<0,1>,<2,1>,<4,1>,<5,23>,<6,36>,. . .,<14,2>]
IPM with Ly = X®: [<0,1>,<4,3>,<5,25>,<6,34>,<7,36>,. ..,<14,2>]
BKLC(GF(2), 16, 8): [<0,1>,<5,24>,<6,44>,<7,40>,<8,45>,...,<12,10>]
B Nordstrom-Robinson code: (16, 256, 6)
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What about the codes with the same d;?
Codes with the same d3 while different B,y

m Seting-up: [EeN BB, 7., Ls € {X°,...,X?}, T = 10,000, o = 1.50

Attack_1D Attack_3D
10 10
— IPM with L2=X~0, L3=X~0 o “ZTIPM with L2=X"0, L3=X~0
—— IPMwiith L2=X"1, L3=X"1 —— IPM with L2=X"1, 13=X"1
08 == IPM with L2=X"2, L3=X"2 0.8 —— IPMwith L2=X"2, L3=X"2
—— IPM with L2=X"3, L3=X~3 —— IPM with L2=X"3, L3=X"3
o oIt L2=X5, L3=X710 9 — IPM with L2=X"5, L3=X"10
506 5 064}
2 2
S04 S04
& &
0.2 0.2
0.0 0.0
4 2000 4000 6000 8000 10000 4 2000 4000 6000 8000 10000
#Traces Number of Traces

Concerning d5, we have

IPM with Ly = X° Ly = X% [<0,1>,<3,4>,<6,6>,<9,4>,<12,1]

B IPMwith Ly = X', Ls = X [<0,1>,<8,3>,<4,1>,<5,1>,... <11,15]
B IPMwith Ly = X? Lz = X% [<0,1>,<3,2>,<4,1>,<5,3>,...,<11,15]
]
]

IPM with L, = X3, Ls = X3: [<0,15,<3,1>,<4,1>,<5,4>,...,<10,15]
IPM with Ly = X°, Ly = X'°: [<0,1>,<6,12>,<8,3>]=BKLC(GF(2),12,4)
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I Summary of Results

Table 2: Optimizing IPM in several scenarios

#Shares For Word-level (IPM) Bit-level (BKLC) A Comments
max{dﬁ} =3 [8, 4, 4]: dﬁ =4
k=4 mean{B;} =4 mean{B;} =4 -1 | [WSYT16,CG18]
n—2 min{Bg} =4 By =14
max{d5} =4 | [16,8,5]:d} =5 [PGST17], Try one
k=38 mean{B;} = 8 mean{B;} =4 -1 | NR non-linear code
min{Bq} = 3 By =24 (16, 256, 6)
maz{d5} =6 | [12,4,6]:d5 =6 New, the best IPM
k=4 mean{B;} =6 mean{B;} =6 0 | code is equivalent
—3 min{Bg} = 12 By =12 to BKLC code
= maz{d5} =8 | [24,8,8] d5 =8 [PGST17], but the
k=8 mean{B;} =12 | mean{B;} =10 | 0 BKLC code can'’t be
min{Bg} =7 By =130 used
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I cConclusions

With the concepts from coding theory, we propose a unified framework to
analyze and optimize the concrete security level of IPM scheme.

B Two leakage metric SNR and M/ to quantitatively characterize the the
SCA resistance of IPM

B By adding Bdé, we propose a unified framework to systemically
evaluate all codes for IPM

B By using attack metric SR, we validate the effective of our unified
framework

B Propose a simple method to choose optimal codes for IPM, also with
examples:

« with n=2 shares: 4-bit and 8-bit variables
« with n=3 shares: 4-bit and 8-bit variables

B |[PM is not optimal compared to BKLC codes, especially for n = 2 with
k=4 and k = 8 bits

FETTR A
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N Appendix I. IPM codes with n = 2 in F.u

Table 3: IPMforn=2and k =4

Lo Weight Enumeration Polynomial I(z, k)

X0 [ <0, 1>, <2, 4>, <4, 6>, <6, 4>, <8, 1> ] 1.151963
X1 [ <0, 15, <2, 3>, <8, 2>, <4, 3>, <5, 4>, <6, 1>, <7, 2>] | 0.380288
X2 [ <0, 1>, <2, 2>, <3, 3>, <4, 3>, <5, 4>, <6, 2>, <7, 1>] | 0.287149
X3 [ <0, 1>, <2, 1>, <8, 4>, <4, 3>, <5, 4>, <6, 3> ] 0.199569
X1 [ <0, 1>, <8, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
XPb [<0, 1>, <3, 3>, <4, 7>, <5, 4>, <7, 1> ] 0.246318
X0 [ <0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
X7 | [<0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> | 0.181675
X8 [ <0, 1>, <8, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
X9 [ <0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
XT0 [ [<0, 1>, <3, 3>, <4, 7>, <5, 4>, <7, 1> ] 0.246318
XTT [ [<0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> | 0.181675
X2 [ [<0, 1>, <2, 1>, <3, 4>, <4, 3>, <5, 4>, <6, 3> ] 0.199569
XT3 1 [<0, 1>, <2, 2>, <3, 3>, <4, 3>, <5, 4>, <6, 2>, <7, 1>] | 0.287149
X% [ [<0, 1>, <2, 3>, <3, 2>, <4, 3>, <5, 4>, <6, 1>, <7,2>] | 0.380288
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I Appendix Il. Two optimal attacks

For two attacks Attack 1D and Attack 2D, we refer to Optimal Aftack [BGHR14] as:

- The monovariate attack measures the sum of leakages for each trace ¢
(1 < g < Q), hence the optimal attack guesses the correct key k* as:

Q
k* = arg max Z log Z exp\

RS o=l mper (1)
1

2
e {(lgl) +1P —wpt, ke F[lz][mg],mg)) }

- The bivariate attack measures each of two shares l; and lg independently, the
optimal attack guesses the correct key k* as:

Q
k* =arg max Z log Z exp\

REFS a=1  mpery (12)
1 2 2
- 55 { (80— wnty @ ke Flialima)” + (12— wrr ()}
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