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Why IPM?
Higher concrete security level (security order at bit-level)

Backgrounds
Masking is the most popular countermeasure to protect cryptographic
implementations against side-channel analysis.

For Boolean masking, also named Perfect masking [CG18] with n shares in
K = F2k can be expressed in a coding format:

Z = (Z1, . . . , Zn) =

(
X +

n∑
i=2

Mi,M2,M3, . . . ,Mn

)
= XG+MH, (1)

where G and H are generating matrix of C and D, respectively.

G =
(

1 0 0 . . . 0
)
∈ K1×n

H =


1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

 ∈ K(n−1)×n
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Why IPM?
Inner Product Masking (IPM)
IPM was proposed by Balasch et al. [BFGV12, BFG15, BFG+17], where
random masks are involved by using Inner Product operation.

Let X ∈ F2k denotes a field elements, L= (L1, L2, . . . , Ln) with Li ∈ F2k\{0}
denotes a vector with n elements. The secret is X = 〈L,Z〉 =

∑n
i LiZi.

Then IPM, also can be expressed in a coding format:

Z =

(
X +

n∑
i=2

LiMi,M2,M3, . . . ,Mn

)
= XG+MH (2)

where G and H are generating matrix of C and D, respectively, as follows.

G =
(

1 0 0 . . . 0
)
∈ K1×n

H =


L2 1 0 · · · 0
L3 0 1 · · · 0
...

...
...

. . .
...

Ln 0 0 · · · 1

 ∈ K(n−1)×n
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Defining parameters of codes
Definition 1 (Weight Enumerator Polynomial)
For a linear code D of parameters [n, l, dD],

WD(X,Y ) =

n∑
i=0

BiX
n−iY i (3)

where Bi = |{d ∈ D|wH(d) = i}| and wH is the Hamming weight function.

Example 2
e.g., for linear code [8,4,4], we have WD(X,Y ) = X8 + 14X4Y 4 + Y 8, also
denoted as: [<0,1>,<4,14>,<8,1>]. Thus, we have B0 = 1, B4 = 14, B8 = 1.

Definition 3 (Dual Code)
The dual code of D, denoted as D⊥, is: D⊥ = {x | ∀d ∈ D, 〈x, d〉 = 0}.

Recall that Z = XG+MH, where G and H are generating matrices of code
C and D, respectively. Thus the generating matrix of dual code D⊥ is

H⊥ = (1, L2, L3, . . . , Ln). (4)
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Why IPM?
Higher concrete security level (security order at bit-level)
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Figure 1: Mutual information I[L+N ;X] between leakages (L = wH(Z))
and X in IPM.

From Fig. 1, obviously,
Boolean masking’s security level is lower than IPM (Note that if
L2 = X0 (= 1), the IPM is degraded to Boolean masking)
IPM’s security depends on the choices of Li
The security level is related to d⊥D as in [PGS+17, BFG+17, CG18]
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Why IPM?
Higher concrete security level (security order at bit-level)
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Figure 2: Mutual information I[L+N ;X], using codes with the same d⊥D.

But, even with the same d⊥D, we can see that:

IPM with different codes have different security level

d⊥D is not enough as a leakage metric

Question: how to concretely characterize the security of IPM?
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Related Works
The state-of-the-art

Security order
Two kinds of security order dw and db under probing model are:

Word-level (k-bit) security order dw: leakages of word-level
computation or data

Bit-level security order db: in practice, each bit of sensitive variable
can be investigated independently

In order to analyze the security order of IPM at bit-level, we introduce:

Sub-field representation
By using sub-field representation, we decompose F2k into Fk2 as

SubfieldRepresentation : (1, L2, . . . , Ln)2k → (Ik,L2, . . . ,Ln)2 (5)

So by sub-field representation, a (1× n) vector (1, L2, . . . , Ln) at word-level
is converted to (k × nk) matrix (Ik,L2, . . . ,Ln) at bit-level.
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The state-of-the-art

Table 1: Summaries of security analysis on IPM and DSM.

Security order Code parameters Metrics Comments

Balasch et al.
[BFG15] dw – MI MI varies for

different L vector

Wang et al.
[WSY+16] db d⊥D MI

Omin (= d⊥D) was used
(the lowest key-dependent

statistical moment)
Poussier et al.

[PGS+17] dw, db d⊥D MI

Balasch et al.
[BFG+17] dw, db – MI dbound (≈ db) is in

bound moment model
Claude et al.

[CG18] dw, db d⊥D MI, SR SR of optimal attack
[BGHR14]

This work dw, db d⊥D, Bd⊥
D

MI, SR, SNR
An unified framework

to analyze all IPM codes
by closed-form expression

- Here dw, db are word- and bit-level security order, respectively, and dw = n− 1.
- Bit-level security order db equals to d⊥D − 1 in [PGS+17], [CG18] and in this work.
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Concrete security level of IPM
SNR as a metric

SNR is a commonly used in side-channel analysis as a leakage metric.
Let

L = P (Z) +N

denotes the leakages where N denotes the independent noise, we have

V ar(E(P (Z) +N |X)) = V ar(E(P (Z)|X))

and then define SNR as:

SNR =
V ar(E(L|X))

V ar(N)
=
V ar(E(P (Z)|X))

σ2
. (6)

Let P̂ (z) be the Fourier transform of P (z) defined as:

Definition 4 (Fourier Transformation)
The Fourier transformation of a pseudo-Boolean function P : Fn2 → R is
denoted by P̂ : Fn2 → R, and defined as: P̂ (z) =

∑
y P (y)(−1)y·z.
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Concrete security level of IPM

Therefore, we have following theorem:

Theorem 5 (SNR of IPM)
For IPM scheme with Z = XG+MH, the SNR between secret X and
leakages is

SNR =
2−2n

σ2

∑
x∈D⊥\{0}

(
P̂ (x)

)2
. (7)

Theorem 6 (Security order of IPM)
If d◦P < d⊥D, the attack fails with SNR= 0, thus the security order of IPM
scheme in bounded moment model is d = d⊥D − 1.

Therefore the security order is the minimum value of d◦P such that
SNR 6= 0, where SNR is quantitative metric to quantify the leakages.
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Concrete security level of IPM
Hamming weight leakage model

We use P (z) = wH(z)d as higher order leakage model. Clearly, the degree
of P is d◦P = d. Thus we have following theorem for SNR.

Theorem 7 (SNR of IPM)
For SNR of the Hamming weight leakages with respect to secret variable X
which protected by IPM, we have

SNR =


0 if d◦P < d⊥D

1
σ2Bd⊥

D

(
d⊥D !

2
d⊥
D

)2

if d◦P = d⊥D
(8)

Surprisingly, the SNR of IPM is quantitatively connected to d⊥D and Bd⊥
D

,
which is determined by selecting L = (L1, L2, . . . , Ln).
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Mutual information as a metric
In the presence of noise N ∼ N (0, σ2), the mutual information between the
noisy leakage L+N and X can be developed using a Taylor’s expansion
[CDG+14]:

I[L+N ;X] ≈ 1

ln 2

+∞∑
d=0

1

2 d!

∑
x∈Fk2

P(X = x)
(kd(L | X=x)− kd(L))2

(V ar(L) + σ2)d

=
1

ln 2

+∞∑
d=0

1

2 d!

V ar(kd(L | X))

(V ar(L) + σ2)d
, (9)

where kd are order d cumulants [Car03].

The term V ar(E(kd(L | X))) is null for d < d⊥D, and equals V ar(µd(L | X))

= V ar(E(Ld
⊥
D | X)) for d = d⊥D. Thus, under Hamming weight leakage

model, the mutual information can be developed at first order in 1/σ2d⊥D as:

I[L+N ;X] =
d⊥D!Bd⊥

D

2 ln 2 · 22d⊥D
× 1

σ2d⊥
D

+O
(

1

σ2(d⊥
D

+1)

)
when σ −→ +∞ (10)
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Mutual information as a metric

Reduce Bd⊥D

Increase d⊥D
M
I:
I
(L

+
N
;X

)

Noise variance: σ2

Figure 3: Two concomitant objectives to reduce the mutual information.

From Fig. 3, we can see that:

the slope in the log-log representation of the MI versus the noise
standard deviation is all the more steep as d⊥D is high, and

the vertical offset is adjusted by Bd⊥
D

; the smaller it is the smaller the MI.
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Choosing optimal codes for IPM
Using d⊥D and Bd⊥

D
as a unified evaluation framework

A unified evaluation framework for IPM
For IPM with Z =

(
X +

∑n
i=2 LiMi,M2,M3, . . . ,Mn

)
= XG+MH, its

concrete security level can be characterized by two defining parameters d⊥D
and Bd⊥

D
, where code D is generated by H.

Example 8
For n = 2 with L2 ∈ F24 , by subfield representation:

d⊥D = 2 for L2 ∈ {Xi} for i ∈ {0, 1, 2, 3, 12, 13, 14}
d⊥D = 3 for L2 ∈ {Xi} for i ∈ {4, 5, 6, 7, 8, 9, 10, 11}

In particular, for d⊥D = 2, we have:

IPM with L2 = X0 : [<0,1>,<2,4>,<4,6>,<6,4>,<8,1>]

IPM with L2 = X1, X14: [<0,1>,<2,3>,<3,2>,<4,3>,<5,4>,<6,1>,<7,2>]

IPM with L2 = X2, X13: [<0,1>,<2,2>,<3,3>,<4,3>,<5,4>,<6,2>,<7,1>]

IPM with L2 = X3, X12: [<0,1>,<2,1>,<3,4>,<4,3>,<5,4>,<6,3>]
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Choosing optimal codes for IPM
Using Bd⊥

D
and d⊥D as a unified evaluation framework
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Figure 4: Numerical calculation and approximation of mutual information
I[L+N ;X] between leakages and X in IPM.
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Choosing optimal codes for IPM
Using Bd⊥

D
and d⊥D as a unified evaluation framework

By this unified evaluation framework, it is easy to select optimal codes for
IPM, which with the highest side-channel resistance.

Algorithm 1: Optimal Code Selection
Result: Optimized d⊥D and Bd⊥

D

1 Maximize d⊥D;
2 if mean{Bi < n

2
} then

3 goto 1;
4 else
5 Minimize Bd⊥

D
;

6 return d⊥D and Bd⊥
D
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Success rate as an attack metric
Practical security evaluation

Optimal Attack [BGHR14]
For each attack, the targeted variable is:

z = (wH(tq + k +m2L2 + · · ·+mnLn), wH(m2), wH(m3), . . . , wH(mn))

for n-dimensional attack (e.g., Attack_2D), and

z = wH(tq + k +m2L2 + · · ·+mnLn) + wH(m2) + wH(m3) + · · ·+ wH(mn)

= z1 + z2 + · · ·+ zn

for 1-dimensional attack (e.g., Attack_1D).

The success rate is the metric for evaluating attacks on different codes (refer
to Appendix for attacks).
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What about the codes with the same d⊥D?
Seting-up: n = 2, k = 4, L2 ∈ {X0, . . . , X3}, T = 10, 000, σ = 1.50
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BKLC(GF(2), 8, 4)
IPM with L2 = X^0
IPM with L2 = X^1
IPM with L2 = X^2
IPM with L2 = X^3

For db = 2, we have

IPM with L2 = X0: [<0,1>,<2,4>,<4,6>,<6,4>,<8,1>]

IPM with L2 = X1: [<0,1>,<2,3>,<3,2>,<4,3>,<5,4>,<6,1>,<7,2>]

IPM with L2 = X2: [<0,1>,<2,2>,<3,3>,<4,3>,<5,4>,<6,2>,<7,1>]

IPM with L2 = X3: [<0,1>,<2,1>,<3,4>,<4,3>,<5,4>,<6,3>]

BKLC(GF(2), 8, 4): [<0,1>,<4,14>,<8,1>] −→Not IPM codes
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What about the codes with the same d⊥D?
Codes with the same d⊥D while different Bd⊥

D

Seting-up: n = 2, k=8 , L2 ∈ {X0, . . . , X7}, T = 10, 000, σ = 1.50
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IPM with L2 = X^7
IPM with L2 = X^8
BKLC(GF(2), 16, 8)
Nordstrom-Robinson code

Concerning d⊥D, we have

IPM with L2 = X0: [<0,1>,<2,8>,<4,28>,<6,56>,<8,70>,. . .,<16,1>]

IPM with L2 = X1: [<0,1>,<2,7>,<4,21>,<5,8>,<6,35>,. . .,<14,1>]

IPM with L2 = X7: [<0,1>,<2,1>,<4,1>,<5,23>,<6,36>,. . .,<14,2>]

IPM with L2 = X8: [<0,1>,<4,3>,<5,25>,<6,34>,<7,36>,. . .,<14,2>]

BKLC(GF(2), 16, 8): [<0,1>,<5,24>,<6,44>,<7,40>,<8,45>,. . .,<12,10>]

Nordstrom-Robinson code: (16, 256, 6)
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What about the codes with the same d⊥D?
Codes with the same d⊥D while different Bd⊥

D

Seting-up: n=3 , k=4 , L2, L3 ∈ {X0, . . . , X3}, T = 10, 000, σ = 1.50
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IPM with L2=X^2, L3=X^2
IPM with L2=X^3, L3=X^3
IPM with L2=X^5, L3=X^10

Concerning d⊥D, we have

IPM with L2 = X0, L3 = X0: [<0,1>,<3,4>,<6,6>,<9,4>,<12,1]

IPM with L2 = X1, L3 = X1: [<0,1>,<3,3>,<4,1>,<5,1>,. . . ,<11,1>]

IPM with L2 = X2, L3 = X2: [<0,1>,<3,2>,<4,1>,<5,3>,. . . ,<11,1>]

IPM with L2 = X3, L3 = X3: [<0,1>,<3,1>,<4,1>,<5,4>,. . . ,<10,1>]

IPM with L2 = X5, L3 = X10: [<0,1>,<6,12>,<8,3>]≡BKLC(GF(2),12,4)
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Summary of Results

Table 2: Optimizing IPM in several scenarios

#Shares F2k Word-level (IPM) Bit-level (BKLC) ∆ Comments

n = 2

k = 4
max{d⊥D} = 3 [8, 4, 4]: d⊥D = 4

-1 [WSY+16, CG18]mean{Bi} = 4 mean{Bi} = 4
min{Bd} = 4 Bd = 14

k = 8
max{d⊥D} = 4 [16, 8, 5]: d⊥D = 5

-1
[PGS+17], Try one
NR non-linear code
(16, 256, 6)

mean{Bi} = 8 mean{Bi} = 4
min{Bd} = 3 Bd = 24

n = 3

k = 4
max{d⊥D} = 6 [12, 4, 6]: d⊥D = 6

0
New, the best IPM
code is equivalent
to BKLC code

mean{Bi} = 6 mean{Bi} = 6
min{Bd} = 12 Bd = 12

k = 8
max{d⊥D} = 8 [24, 8, 8]: d⊥D = 8

0
[PGS+17], but the
BKLC code can’t be
used

mean{Bi} = 12 mean{Bi} = 10
min{Bd} = 7 Bd = 130
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Conclusions

With the concepts from coding theory, we propose a unified framework to
analyze and optimize the concrete security level of IPM scheme.

Two leakage metric SNR and MI to quantitatively characterize the the
SCA resistance of IPM

By adding Bd⊥
D

, we propose a unified framework to systemically
evaluate all codes for IPM

By using attack metric SR, we validate the effective of our unified
framework

Propose a simple method to choose optimal codes for IPM, also with
examples:

• with n=2 shares: 4-bit and 8-bit variables
• with n=3 shares: 4-bit and 8-bit variables

IPM is not optimal compared to BKLC codes, especially for n = 2 with
k = 4 and k = 8 bits
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Question?

27/32 Télécom ParisTech Wei Cheng et al. Jun 24, 2019



References I

Josep Balasch, Sebastian Faust, and Benedikt Gierlichs.

Inner product masking revisited.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages 486–510.
Springer, 2015.

Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga, and François-Xavier Standaert.

Consolidating Inner Product Masking.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer Science,
pages 724–754. Springer, 2017.

Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede.

Theory and Practice of a Leakage Resilient Masking Scheme.
In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science, pages 758–775. Springer,
2012.

28/32 Télécom ParisTech Wei Cheng et al. Jun 24, 2019



References II
Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, and Olivier Rioul.

Masks Will Fall Off – Higher-Order Optimal Distinguishers.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science,
pages 344–365. Springer, 2014.

Jean-François Cardoso.

Dependence, Correlation and Gaussianity in Independent Component Analysis.
Journal of Machine Learning Research, 4:1177–1203, 2003.

Claude Carlet, Jean-Luc Danger, Sylvain Guilley, Houssem Maghrebi, and Emmanuel Prouff.

Achieving side-channel high-order correlation immunity with leakage squeezing.
J. Cryptographic Engineering, 4(2):107–121, 2014.

Claude Carlet and Sylvain Guilley.

Statistical properties of side-channel and fault injection attacks using coding theory.
Cryptography and Communications, 10(5):909–933, 2018.

Romain Poussier, Qian Guo, François-Xavier Standaert, Claude Carlet, and Sylvain Guilley.

Connecting and Improving Direct Sum Masking and Inner Product Masking.
In Thomas Eisenbarth and Yannick Teglia, editors, Smart Card Research and Advanced Applications - 16th
International Conference, CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected
Papers, volume 10728 of Lecture Notes in Computer Science, pages 123–141. Springer, 2017.

29/32 Télécom ParisTech Wei Cheng et al. Jun 24, 2019



References III

Weijia Wang, François-Xavier Standaert, Yu Yu, Sihang Pu, Junrong Liu, Zheng Guo, and Dawu Gu.

Inner Product Masking for Bitslice Ciphers and Security Order Amplification for Linear Leakages.

In Kerstin Lemke-Rust and Michael Tunstall, editors, Smart Card Research and Advanced Applications - 15th
International Conference, CARDIS 2016, Cannes, France, November 7-9, 2016, Revised Selected Papers,
volume 10146 of Lecture Notes in Computer Science, pages 174–191. Springer, 2016.

30/32 Télécom ParisTech Wei Cheng et al. Jun 24, 2019



Appendix I. IPM codes with n = 2 in F24

Table 3: IPM for n = 2 and k = 4

L2 Weight Enumeration Polynomial I(x, k)
X0 [ <0, 1>, <2, 4>, <4, 6>, <6, 4>, <8, 1> ] 1.151963
X1 [ <0, 1>, <2, 3>, <3, 2>, <4, 3>, <5, 4>, <6, 1>, <7, 2> ] 0.380288
X2 [ <0, 1>, <2, 2>, <3, 3>, <4, 3>, <5, 4>, <6, 2>, <7, 1> ] 0.287149
X3 [ <0, 1>, <2, 1>, <3, 4>, <4, 3>, <5, 4>, <6, 3> ] 0.199569
X4 [ <0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
X5 [ <0, 1>, <3, 3>, <4, 7>, <5, 4>, <7, 1> ] 0.246318
X6 [ <0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
X7 [ <0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
X8 [ <0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
X9 [ <0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
X10 [ <0, 1>, <3, 3>, <4, 7>, <5, 4>, <7, 1> ] 0.246318
X11 [ <0, 1>, <3, 4>, <4, 5>, <5, 4>, <6, 2> ] 0.181675
X12 [ <0, 1>, <2, 1>, <3, 4>, <4, 3>, <5, 4>, <6, 3> ] 0.199569
X13 [ <0, 1>, <2, 2>, <3, 3>, <4, 3>, <5, 4>, <6, 2>, <7, 1> ] 0.287149
X14 [ <0, 1>, <2, 3>, <3, 2>, <4, 3>, <5, 4>, <6, 1>, <7, 2> ] 0.380288
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Appendix II. Two optimal attacks

For two attacks Attack_1D and Attack_2D, we refer to Optimal Attack [BGHR14] as:

- The monovariate attack measures the sum of leakages for each trace q
(1 ≤ q ≤ Q), hence the optimal attack guesses the correct key k∗ as:

k̂∗ = arg max
k∈Fk2

Q∑
q=1

log
∑

m2∈Fk2

exp\

−
1

4σ2

{(
l
(1)
q + l

(2)
q − wH(tq ⊕ k ⊕ F [l2][m2],m2)

)2} (11)

- The bivariate attack measures each of two shares l1q and l2q independently, the
optimal attack guesses the correct key k∗ as:

k̂∗ = arg max
k∈Fk2

Q∑
q=1

log
∑

m2∈Fk2

exp\

−
1

2σ2

{(
l
(1)
q − wH(tq ⊕ k ⊕ F [l2][m2])

)2
+
(
l
(2)
q − wH(m2)

)2} (12)
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