
How (Not) To End Up

With Dependent Random Bits

Markus Dichtl

Markus.Dichtl@gmail.com

This seems to be a completely trivial and innocent

scenario: A ring oscillator is sampled by a D-flip-

flop in order to generate random bits.

D

clk

But wait a minute: we have to respect setup and

hold times if we want the flip-flop to work correctly!

Now one could argue: Forget about it, if we

happen to violate this condition, we get into a

metastable state, but in what bit this state ends is

just an additional source of randomness.

But this argument neglects one important question:

Does the state after metastability depend on the

previous bit stored in the flip-flop?

This talk tries to answer this question based on

experimental results.

As I am retired now, I had to come up with a possibility to keep playing with

FPGAs, so I bought an Xilinx Arty A7-35 board based on an Artix FPGA.

All subsequent experimental results come from this board.

0 100000 0 100000 0 100000 0 100000 0 100000

0 100000 0 100000 0 100000 0 100000 0

100000

Only 10 subsequent numbers of 0 bits shown

Top row: flip-flops preloaded with 0s

Bottom row: flip-flops preloaded with 1s

(I have to admit, a not too interesting result, but...)

Ring oscillator of length 31,

Restart from a fixed state with one gate implemented as NAND

All 31 bits sampled 10 ns after restart, repeated 100000 times

0 100000 5 97029 14977 55162 54741 25651 83051 2

0 100000 14 95716 18316 52790 56236 22464 84467 0

Only 10 subsequent numbers of 0 bits shown

Top row: flip-flops preloaded with 0s

Bottom row: flip-flops preloaded with 1s

Ring oscillator of length 31,

Restart from a fixed state with one gate implemented as NAND

All 31 bits sampled 100 ns after restart, repeated 100000 times

x-axis: subsequent bits, y-axis: difference of 0 bits observed when FF preloaded with 0 or 1

RO of length 31, all bits sampled 890 ns after restart, 100000 trials for each preload value

With a difference of 4.99% of the probability to sample a 0

bit for 0/1 as prior flip-flop state, these dependencies can

be quite strong, but most people do not sample their ROs

so fast (though it is good idea in order to maximize entropy

harvest)

What about a very conservative approach of sampling only

after more than a million ring oscillator periods? I tried this

with ring oscillators of length 3. The ring oscillators were not

reset, but running freely.

I measured 9 ROs of length 3 running freely, again

sampling all inverters.

Both for 0 and 1 as preload state 3 million samples were

taken.

All flip-flops tend to change the preloaded state.

1502085 1506624

1513431 1518449

1507615 1513077

1493325 1501211

1520391 1524800

1455158 1456922

1515804 1520231

1510403 1514842

1511427 1516003

1507301 1519764

1438208 1450279

1453096 1465461

1475761 1480265

1480520 1484309

1494746 1499731

1485485 1489716

1505562 1505981

1535601 1539973

1502994 1508370

1461641 1468447

1546903 1551930

1460965 1471782

1529420 1533832

1470798 1481174

1527993 1541858

1608490 1618957

1433726 1451027

Numbers of 0 sampled , left columns preloaded with 0

Are the differences statistically significant? Yes!

The sorted decimal logarithms for the p-values of the number of 0s

for prelaoding with 1, according to the binomial distribution with the

bias from the bits with preloading 0

All percentage levels of

acceptance except 2

less than 10-5

Now some people think that XORing hundreds of ring oscillator

outputs could lead to provably secure random bits.

So I looked at the XORs of the outputs of 50 freely running ROs

of length 3, again for all 3 inverters, again sampling only after

more than a million RO periods, again 3 million samples per

preload value.

1599258 1626262 1654136 1681490 1551179 1573764

The tendency to change state is considerably stronger than for

simple RO outputs (decimal logarithms of the p-values (as

before) -214.141,-221.149,-149.735)

How to fix the problem?

The easiest approach: Preload the sampling flip-flop

(performance penalty for very fast sampling)

A bit more involved: Post process the bits preceded by 0 separately

from those preceded by 1

0000001000011101011

0

000001000111

01100101-preceded

0-preceded

sample

d

For both subsequences, it could make sense to assume independent bits, but of course

one has to assume different but fixed biases. Any postprocessing for independent bits, like

von Neumann or Juels et al. may be applied to both subsequences.

Conclusion

Once more, generating true random number has turned out

to be trickier than assumed.

