
A Multimode Ring Oscillator based

TRNG for FPGAs

Miloš Grujić

imec-COSIC, KU Leuven

June 25th, 2019.

True Random Number Generators (TRNGs)

• Security of crypto applications → uniformity and unpredictability of random bits

• TRNGs - randomness from physical non-deterministic processes

• Required: stochastic model and lower bound of the (min)-entropy

2

Improve the TRNG metric
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ∗ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝐷.𝐸.∗ 𝐴𝑟𝑒𝑎
by:

- improving the efficiency of the digitization

- boosting the amount of generated randomness in the entropy source

AIS-31 compliant design: security analysis based on the stochastic model

Minimize pseudo-randomness and the effect of the unwanted global noise

sources

Goals

3

• Missing security evaluation and the entropy “measured” based on the generated

random bits without IID claim

Multi-mode RO TRNG [YFH+14]

4

Delay-chain TRNG [RYDV15]

General architecture of the DC-TRNG Entropy extracting process

5

New TRNG architecture

6

Experiment 1 – Interlocking of the edges

7

New TRNG architecture

8

New TRNG architecture

9

10

TRNG architecture – Implemented design

 PlanAhead: Spartan-6 FPGA

Multi-mode RO

Delay-chain

Double independent coding lines

11

New TRNG architecture

12

• Baseline assumptions:

- entropy extracted from the jittery pulse of the multi-mode RO

- presence of independent Gaussian white noise

- other noise sources present, but not exploited

- due to differential design decreased influence of global noises

- raw bits independent due to reset between successive generations

Stochastic model

13

• Notation: w – number of stages between edge-inserting stages, n – mode of the

RO (number of inserted edges), m – current cycle (1 cycle contains n consecutive

edges),
𝜎𝑚
2

𝑡𝑚
- Gaussian jitter strength

• Variance of the virtual pulse width coming from the Gaussian noise:

𝜎𝑝𝑢𝑙𝑠𝑒,𝐺
2 = 𝜎𝑚

2

𝑡𝑚
∙ 𝑑𝑠𝑡𝑎𝑔𝑒∙ (2 ∙ 𝑤 ∙ 𝑚 ∙ 𝑛 − 𝑛 − 2 ∙ 𝑤 ∙ (𝑚 mod 2))

• When w and n are determined by the circuit topology, we can calculate (even) m,

such that:

𝑚 ≥
𝜎𝑝𝑢𝑙𝑠𝑒,𝐺
2 + 𝜎𝑚

2

𝑡𝑚
∙ 𝑑𝑠𝑡𝑎𝑔𝑒∙ 𝑛

2 ∙ 𝑤 ∙ 𝜎𝑚
2

𝑡𝑚
∙ 𝑑𝑠𝑡𝑎𝑔𝑒∙ 𝑛

Stochastic model

14

Stochastic model

𝑃1 𝜇𝑝𝑢𝑙𝑠𝑒𝑤𝑖𝑑𝑡ℎ , 𝜎𝑝𝑢𝑙𝑠𝑒,𝐺

= ෍

𝑖=−∞

+∞

෍

𝑗=1

𝑁/2

൥Ф
σ𝑘=1
2𝑗

𝑑𝑐𝑎𝑟𝑟𝑦,𝑘 − 𝜇𝑝𝑢𝑙𝑠𝑒𝑤𝑖𝑑𝑡ℎ − 𝑖 ∗ 𝑑𝑠𝑡𝑎𝑔𝑒 ∗ (𝑤 − 1)

𝜎𝑝𝑢𝑙𝑠𝑒,𝐺

𝐻1= −𝑃1 ∗ 𝑙𝑜𝑔2 𝑃1 − 𝑃0 ∗ 𝑙𝑜𝑔2(𝑃0)

15

𝜎𝑝𝑢𝑙𝑠𝑒,𝐺 = 20 𝑝𝑠𝜎𝑝𝑢𝑙𝑠𝑒,𝐺 = 10 𝑝𝑠 𝜎𝑝𝑢𝑙𝑠𝑒,𝐺 = 40 𝑝𝑠

• Platform parameters:

o 𝑑𝑠𝑡𝑎𝑔𝑒 ≈ 675 𝑝𝑠

o
𝜎𝑚
2

𝑡𝑚
= 2.7 fs

o 𝑑𝑐𝑎𝑟𝑟𝑦,𝑎𝑣𝑔 ≈ 20 𝑝𝑠– individually calculated for each delay block

• Design parameters for targeted H1 = 0.997 bits:

o n = 3, w = 2 – circuit topology

o m = 18 => new raw random bit available after 73.57𝑛𝑠

o 𝜎𝑝𝑢𝑙𝑠𝑒,𝐺 = 19.7 𝑝𝑠

Stochastic model

16

Experiment 2

17

 Spartan-6 FPGA on LX9 Microboard

Experiment 2

18

~ 40kHz

Experiment 2 – Influence of the SMPS

Spartan 6 FPGA core voltage

Output filter with corner

frequency:
1

2𝜋 𝐿𝐶
= 40kHz

19

 From: Xilinx Spartan -6 FPGA LX9

MicroBoard User Guide

• Applying linear code [16,8,5] as arithmetic post-processing:

• In general: LC [n, k, d] post-processing reduces the bias to:

A note on the arithmetic post-processing

𝐿 𝑋1, 𝑋2 = 𝑋1 + 𝑋1 ≪ 1 + 𝑋1 ≪ 2 + 𝑋1 ≪ 4 + 𝑋2

𝑋1, 𝑋2, 𝐿(𝑋1, 𝑋2) − 8-bit words

𝜀𝐿𝐶 = 2𝑑−1𝜀𝑖𝑛
𝑑

20

• Linear code [16,8,5] achieves smaller bias for the same throughput as one-stage

XOR post-processing:

• Linear code post-processing – reduces both bias and small serial correlation
[H. Zhou and J. Bruck, “Linear extractors for extracting randomness from noisy sources”, 2011 IEEE

International Symposium on Information Theory]

𝜀𝐿𝐶 = 24𝜀𝑖𝑛
5 𝜀𝑋𝑂𝑅 = 2𝜀𝑖𝑛

2

• FPGA platform: Xilinx Spartan 6

• Area (without post-processing): 25 LUTs, 80 FFs and 20 carry4 elements

• Throughput before post-processing: 12.5 Mb/s

• Throughput after post-processing: 6.25 Mb/s

• Estimated H1: 0.997 (raw r.n.)

• Design effort: manual placement, no manual routing

Implementation results

21

[source: reddit.com]

Comparisons with [PMB+16]

TRNG type FPGA Area
[LUT/FF/CARRY4]

Throughput
[Mb/s]

Entropy

per bit

Entropy

throughput
[Mb/s]

Design

effort

ERO Spartan 6 46/19 0.0042 0.999 0.004 1 (5/5)

COSO Spartan 6 18/3 0.54 0.999 0.539 5 (5/1)

MURO Spartan 6 521/131 2.57 0.999 2.567 1.25 (5/4)

PLL Spartan 6 34/14 0.44 0.981 0.431 1.67 (5/3)

TERO Spartan 6 39/12 0.625 0.999 0.624 5 (5/1)

STR Spartan 6 346/256 154 0.998 153.9 2.5 (5/2)

This TRNG Spartan 6 25/80/20 18 0.997 17.95 1.67 (5/3)

23

References
[YFH+14] K. Yang, D. Fick, M. B. Henry, Y. Lee, D. Blaauw, D. Sylvester, “A 23Mb/s 23pJ/b Fully Synthesized True-Random-

Number Generator in 28nm and 65nm CMOS,” ISSCC 2014.

[RYDV15] V. Rožić, B. Yang, W. Dehaene, and I. Verbauwhede, “Highly efficient entropy extraction for true random number

generators on FPGAs,” DAC 2015.

[PMB+16] O. Petura, U. Mureddu, N. Bochard, V. Fischer and L. Bossuet, “A survey of AIS-20/31 compliant TRNG cores

suitable for FPGA devices,” FPL 2016.

24

