Transient Effect Ring Oscillators Leak Too

CryptArchi 25/06/2019

Ugo MUREDDU, Brice COLOMBIER, Nathalie BOCHARD, Lilian BOSSUET, Viktor FISHER

> UNIV LYON, UJM-SAINT-ETIENNE, CNRS, LABORATOIRE HUBERT CURIEN UMR 5516, F42023 SAINT-ETIENNE FRANCE

TRANSIENT EFFECT RING OSCILLATORS LEAK TOO

Current industrial context

U. MUREDDU

CRYPTARCHI 19

Context 1/2: electronic advances

- 1971: Intel 4004
- ⇒ 2300 transistors
- ⇔ transistor size: 10 µm

<u>2017</u>: Qualcomm Centriq 2400 ⇒ 18 billion transistors ⇒ transistor size: 10 nm

Context 2/2: electronic advances

- Internet of Things
 - About 11 Billion connected objects in 2018¹
 - Expected to be **125 Billion** in 2030¹
 - Huge risks of unauthorized use or abuse

¹https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018roundup-of-internet-of-things-forecasts-and-market-estimates

U. MUREDDU

CRYPTARCHI 19

TRANSIENT EFFECT RING OSCILLATORS LEAK TOO

PUF

U. MUREDDU

CRYPTARCHI 19

What is a Physical Unclonable Function (PUF)?

- Exploit a **random static** phenomena: **process variations** at transistor level
- In digital circuits: comparison of supposedly identical structures
- Applications: Intrinsic identification of chips

What is a Physic	sical Unclon	ID	IC
Function (PUF)		AF30	
<text><list-item><list-item></list-item></list-item></text>	chips	37B1	
	, f identical	8992	
		FE72	
		E90B	
		5129	
	Course out 10	8C9D	
		253A	
U. IVIUREDDU	CRYPTARCHI 19	25/06/2019	

Manufacturing process variations

- Manufacturing process variations (MPV)
 - Reducing the size of electronic components ⇒ Increases MPV

[W13] M.Wirnshofe, "Variation-aware adaptive voltage scaling for digital [BRA07] A.Brown, G.Roy, and A.Asenov,, "Poly-Si-Gate-Related Variability in Decananometer MOSFETs With Conventional Architecture," IEEE transactions on electron devices 2007

CMOS process variations

• Affect the switching speed of the transistors

PUF architectures in logic devices

Mostly based on oscillating rings!

Very sensitive to process variations.

- Morozov et any me zoto (minot
 - Arbiter VS RO VS Butterfly

[MMS10] S. Morozov, A. Maiti, P. Schaumont, "A Comparative Analysis of Delay Based PUF Implementations on FPGA," 6th International Symposium on Applied Reconfigurable Computing, March 2010

- Target Xilinx Spartan-3E FPGA
- "Symmetry requirements for Arbiter and Butterfly PUF cannot be satisfied using available FPGA routing schemes Such a RO based PUF can produce a working PUF"
- Maiti et al. HOST 2010 [MCMP10]
 - RO PUF
 125 Xilinx Spartan-3E FPGA, 512 RO/FPGA
 [MCMP10] A. Maiti, J. Casarona, L. McHale and P. Schaumont, "A large scale characterization of RO-PUF," in Proc. of Int. Sym. on Hardware-Oriented Security and Trust (HOST), IEEE, 2010, pp.94-99.
 - *"RO-PUF output signatures are fairly uniformly distributed with high rate of uniqueness in terms of inter-die Hamming distance"*
- Maiti et al. NIST worshop 2011 [MCMP11]
 - Arbiter VS RO
 - 193 Xilinx Spartan-3E FPGA
 - "RO-PUF exhibited better performance compared to Arbiter PUF even if the former is implemented on a bigger device"
 [KKR+12] S. Katzenbeisser, Ü. Kocabas, V. Rožić, A.R. S
- Katzenbeisser et al. CHES 2012 [KKR+12]
 - Arbiter VS RO VS SRAM VS FF and latch
 - Target: 96 ASIC TSMC 65 nm CMOS

[KKR+12] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.R. Sadeghi, I. Verbauwhede, C. Wachsmann. "PUFs: Myth, Fact or Busted? A Security Evaluation of Physically Unclonalble Functions Cast in Silicon" in Proc. of Int. Conf. on Cryptographic Hardware an Embedded Systems (CHES), Spinger, LNCS, vol. 7428, 2012, pp. 283-301.

[MCMP11] A. Maiti, J. Casarona, L. McHale and P. Schaumont, "A Framework for the Evaluation of Physical Unclonable Functions," in

Proc. of NIST Work. on Crypto. For Emerging Tech. and Appl., 2011.

• "The SRAM and RO PUFs achieve almost all desired properties of a PUF"

CRYPTARCHI 19

Studied cells: Ring Oscillator (RO)

 Composed of an odd N number of inverters and a gate to activate it

Studied cells: Transient Effect Ring Oscillator (TERO)

- An electronic circuit that oscillates temporarily
- Composed of an even 2xN number of inverters and a couple of gates to activate it

 Duty cycle of the output will move from 50% to 0% or 100% and stop the oscillations

Oscillator based PUF architecture

Chip to analyze

EM analysis on RO

- Method: using the electromagnetic radiation to analyze RO
- Finding : RO frequencies and All those works target physical localization
- EM frequency cartography only RO
- Near-field proh

[MSSS11] D. Merli, D. Schuster, F. Stumpf, and G. Siql, "Semi-invasive EM attack on FPGA RO PUFs and countermeasures," in Proceedings of the Workshop on Embedded Systems Security, WESS '11, (New York, NY, USA), pp. 2 :1-2 :9, ACM, 2011.

[BBAF13] P. Bayon, L. Bossuet, A. Aubert, V. Fischer. EM radiation analysis on true random number generators: Frequency and localization retrieval method. In Proceedings of the IEEE Asia-Pacific International Symposium and Exhibition on Electromagnetic Compatibility (APEMC 2013), Melbourne, Australia, May 2013.

[MSSS11]

CRYPTARCHI 19

25/06/2019

Y{5-7} (f=100MHz)

Y{5-7} (f=250MHz)

EM trace for the point {5-7}

for the point {5-7}

[BBAF13]

1.8

Frequency (Hz)

22

Objectives

- Evaluate the possibility of an EM analysis on TERO
 - Finite number of oscillations
 - Is it possible to intercept EM radiation?

What about TERO?

TRANSIENT EFFECT RING OSCILLATORS LEAK TOO

Electromagnetic analysis of TERO

U. MUREDDU

CRYPTARCHI 19

Experimental setup

- FPGA platform HECTOR [LDFV18] : experiments made on Xilinx Spartan 6 and Intel Cyclone V FPGAs
- EM probe RS H 2.5-2 from Rohde & Schwartz
- Real time spectrum analyzer RSA607a from Tektronix
- XYZ table

[LFV18] : M.Laban,M.Drutarovsky,V.Fischer,andM.Varchola,"Modular evaluation platform for evaluation and testing of physically unclonable functions," in 28th International Conference Radioelektronika, April 2018, pp. 1–6.

CRYPTARCHI 19

EM analysis of one TERO cell

Nosc can be retrieved

- TERO cell periodically restarted
- Frequency + duration of oscillation $\Rightarrow N_{osc} = 223$

EM analysis of one TERO cell

- Same TERO cell
- TERO output stays inside the FPGA

EM analysis of one TERO cell

Nosc can be retrieved

• FPGA decapsulation with acid mix: nitric (HNO₃)/sulfuric (H₂SO₄)

Spartan 6

EM analysis of two TERO cells

The two N_{osc} can be dissociated

- Two TERO cells periodically restarted at the same time
- $\Rightarrow N_{osc1}$ = 223 and N_{osc2} = 892

EM analysis of a TERO PUF

Successive comparaisons can be caught

• Four successive comparisons

EM analysis of a TERO PUF

 Successive comparisons scheme to clone a complete TERO-PUF:

 $\begin{array}{l} A_1 \operatorname{versus} B_1 \ \rightleftharpoons \ \text{identification of two} \ N_{osc} \\ A_1 \operatorname{versus} B_2 \ \rightleftharpoons \ N_{osc} \ \text{of} \ A_1, \ B_1 \ \text{and} \ B_2 \\ A_2 \operatorname{versus} B_1 \ \rightleftharpoons \ N_{osc} \ \text{of} \ A_2 \end{array}$

$$A_m$$
 versus $B_m \implies N_{osc}$ of A_m and B_m

• 2xm-1 comparisons to clone the whole PUF: linear complexity.

CRYPTARCHI 19

Leakage prevention measures

• Make the device physically inaccessible: aluminum lid to shield EM emissions (not always possible)

CRYPTARCHI 19

- Not to allow users to access challenges
- Activation of all TEROs for each comparison

Conclusion

• Hardware traceability needs increase with IoT deployments

- PUF allow intrinsic identification of chips
- Many PUF based on **digital oscillators**
- Show for the first time TERO is vulnerable to EM analysis: to be anticipated during design conception!

Thank you!

ugo.mureddu@univ-st-etienne.fr

U. MUREDDU

CRYPTARCHI 19