
Survey of Notable Security-Enhancing

Activities in the RISC-V Universe

G. Richard Newell

Cryptarchi ‘19 (June 25)

 A free and open ISA developed at UC Berkeley
 Via a permissive BSD license

 ISA designed for
 Simplicity - < 50 instructions required to run Linux

 Longevity – standardized instructions are fixed, your code runs forever

 RISC-V foundation setup to
 Protect the ISA

 Foster adoption

 RISC-V is not an open source processor
 Although open source implementations will exist

 Provides everyone an “architectural” license to innovate

Have you heard of RISC-V?

 RISC-V ISA based microarchitecture compared to a roughly comparable-in-performance

ARM CPU implemented in the same silicon process:

UCB “Rocket” single-issue, in-order, 5-stage pipeline, single- and double-precision floating point, 64-bit RV64G ISA microarchitecture

ARM “Cortex-A5”, single-issue, in-order, single- and double-precision floating point, 8-stage pipeline, 32-bit ARMv7 ISA microarchitecture

RISC-V Area and Power Advantage

Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic and K. Asanovic, "A45nm 1.3GHz 16.7 Double-Precision

GFLOPS/W RISC-V Processor with Vector Accelerators," in European Solid State Circuits Conference (ESSCIRC), 2014

64 bit machine

But only ½ the area

Better performance

At ½ the power

Board of DirectorsSemiconductor OEMsAcademia & ResearchDatacenterModern fabsEmerging ApplicationsSystem OEMsDebug, OS and ToolsEDA, IP and SupportRISC-V IP Providers

 Chip Organizations

RISC-V Members
Through a Security Filter

 Defense Companies

 Security IP Security Services and Tools

• Application Denied

Some Notable RISC-V Security
Activities in Academia

 Tagged memory, Enclaves, CFI protection, Side

Channels, etc.

 Many cores incl. popular PULP cores, Timing channels

mitigation

 Tagged memory (Cambridge Univ.)

 (TEE)

 Sanctum TEE

DARPA SSITH Program

 Addressing Cyber Threats w/ HW; ~$60M spend

 RISC-V mandated as demonstration vehicle

 ~Half-dozen HW performers

 Plus analysis and red teaming (Galois)

Correctness Proofs

MIT Cornell

Information Flow

Tracking

Draper Labs

Multi-security policy

enforcement w/ tags

Lockheed Martin

Isolation & bounds

checking w/ tags

SRI International

Memory protection

w/ tags (CHERI)

Univ. of Michigan

Cyber-attack

countermeasure

using churn

UCSD

Adaptive use of

encryption

RISC-V Foundation
Security Groups Organization

8

Board of Directors

Marketing Technical Standing

Committees

∙∙∙ Etc.PrivilegeTask GroupsAPAC Events ∙∙∙ Etc.

Security

TEE Crypto.

(C) Dr. Helena Handschuh (Rambus)

(VC) Dr. Joseph Kiniry (Galois)

98 members

(C) Joe Xie (Nvidia)

(VC) Nick Kossifidis (ICS-Forth)

134 menbers

(C) Richard Newell (Microchip)

(VC) Open

71 members

Augmented ISA

Activity of Note: Formal Spec

Putting it all Together:
The RISC-V Security Stack

RISC-V ISA

RISC-V Implementation

Formal Specification

Compliance Suite

Augmented ISA

(Secure SBI)
Formal Specification

Secure MicroKernel

(e.g. seL4)
Formal Specification

RichOS (e.g. Linux)

About the TEE Task Group

 One of the most popular groups (129 registered members)

 Regular conference calls / mailing list

 Its mission is:
 To define an architecture specification for supporting Trusted Execution

Environments on RISC-V processors

 To provide necessary implementation guidelines and/or recommendations
in order to assist developers to realize the specification

 To enable the development of necessary components (hardware and
software) to support the specification

Work in progress

 On the hardware side

 Modifications on the Physical Memory Protection (PMP) mechanism

 Proposal for an I/O Physical Memory Protection (IOPMP) block

 Proposal for a Control Flow Integrity (CFI) extension

 On the software side

 Secure Monitor architecture

 TODO

 Secure Boot

 ...

RISCV TEE Core Arch

 Embedded Profile
 M/U mode

 Physical Memory Protection

 (Optionally) User Mode Interrupt

• Application Profile
• M/S/U mode

• Virtual Memory (SV32/SV39/SV48)

• Physical Memory Protection (PMP)

RISCV TEE SOC Arch

 Embedded Profile
 IO Physical Memory

Protection

• Application Profile
• SMMU/IOMMU

• IO Physical Memory Protection

Proposed PMP modifications

 Rationale - Prevent M mode from accessing memory that belongs to S/U modes, to provide

the equivalent of S mode's sstatus.SUM bit

 We want to have locked rules that are only enforced on M mode but not on S/U modes (e.g.

to allow M mode to only have execute permission, without also allowing S/U to have the

same privilege)

 Say hello to Machine Mode Isolation bit on mstatus (mstatus.MMI) !

M-mode access to U/S

Memory fails!

I/O Physical Memory Protection
Proposal

 Protects physical memory from all memory masters in system

 Supports N memory masters sharing one IOPMP, or one IOPMP for one memory master

 Supports both 32bit and 64bit RISC-V implementations

 Scalable number of entries

 Supports error reporting

Control Flow Integrity
extension proposal

Secure Monitor’s architecture

 Current implementations from group members
 MultiZone™ from HexFive (https://hex-five.com/products/)

 Keystone from UC Berkeley (https://keystone-enclave.org/)

 A lot of work to be done !
 Define APIs between TEEs and between TEEs and the rest of the world (we need to work together

with the upcoming platform specification task group e.g. for the SBI part)

 Define a memory isolation scheme using PMP (there is a draft proposal on that)

 Define a memory isolation scheme for I/O PMP

 Define mechanisms for handling multiple harts

 Define mechanisms for interupt handling / delegation

 Define common format for TEE binaries (e.g. ELF with extras)

 Write code for all of the above and test it

 Provide an SDK

 ...

Base Crypto Extension:
AES Round-based instructions

 These instructions perform a round of AES encryption or decryption

vaese vData, vRndKey # encrypt

vaeselast vData, vRndKey # encrypt last round

vaesd vData, vRndKey # decrypt

vaesdlast vData, vRndKey # decrypt last round

.vv and .vs variants; maskable; SEW=128, vrep is ignored

 Data Input (vData) – Vector register with vl 128-bit elements

 Input round: Input message plaintext (to be encrypted) or ciphertext (to be decrypted)

 Other rounds: Current AES intermediate round state from previous round

 Key Input (vRndKey) – Vector with vl 128-bit round keys (.vv); or with 1 shared round key (.vs)

 Previously computed from the AES Crypto key by key-expansion commands.

 The round key can be pre-computed and stored or computed on-the-fly

 Round keys are always 128 bits (AES Crypto key can be 128, 192, or 256 bits)

 Data output (vData) – 128-bits, overwrites Data Input (i.e., these commands are destructive)

 Final round: Resulting final ciphertext (when encrypting) or plaintext (when decrypting)

 Other rounds: Current AES intermediate round state

Ken Dockser- RISC-V Workshop June 2019

Key Expansion

commands not

shown

Extended Crypto Extension:
AES All-Rounds Instructions

 These instructions perform all rounds (10-14) of AES encryption or decryption

vaese128 vData, vKey # encrypt (all 10 rounds), 128-bit raw AES key (w0-3)

vaese192 vData, vKey # encrypt (all 12 rounds), 2*SEW 192-bit raw AES key (w0-5)

vaese256 vData, vKey # encrypt (all 14 rounds), 2*SEW 256-bit raw AES key (w0-7)

vaesd128 vData, vRndKey # decrypt (all 10 rounds), Last 128-bit round key (w40-43)

vaesd192 vData, vRndKey # decrypt (all 12 rounds), 2*SEW Last two round keys (w44-47, w48-51)

vaesd256 vData, vRndKey # decrypt (all 14 rounds), 2*SEW Last two round keys (w52-55, w56-59)
SEW = 128

For 192 and 256 the vData input/output are narrower (128 bits) than the 2*SEW (256 bit) key elements

 Destructive – saves opcode space

 Vector-Scalar variant – key shared by all elements

 Key-expansion functionality built in (unlike the single-round instructions)

 vKey - standard AES key

 vRndKey: last one or two standard round keys
Ken Dockser- RISC-V Workshop June 2019

Base Extension: SHA-2 family of
secure hashes

 Vector instructions for two underlying algorithms (polymorphic):

 SHA-256: Consumes 512 bits of message per 64 rounds (SEW=256)

 SHA-512: Consumes 1024 bits of message per 80 rounds (SEW=512)

 Four additional simple variants supported using above instructions

 Based on SHA-256: SHA-224

 Based on SHA-512: SHA-512/224, SHA-512/256, SHA-384

 4 vector registers (or groups)

 2*SEW Message State - input message in 2*SEW chunks

 Working State - intermediate state between rounds

 Hash State - Accumulates final working state after each 60/84 rounds

Ken Dockser- RISC-V Workshop June 2019

SHA Vector Opcodes

 These instructions perform 16 rounds of SHA-256 or -512:

vms_dst: vector of vl (2*SEW) elements of the next message states

vms_src: vector of vl (2*SEW) elements of the previous message states

vms: vector of vl (2*SEW) elements of the current message states

vws: vector of vl (SEW) elements of the previous working states (input)
and the next working states (after execution, i.e., destructive)

rnd: Immediate value indicating first of next 16 rounds to work on:

(0, 16, … 48) for SHA-256, (0,16,… 64) for SHA-512

 This instruction performs all 64 (or 80) rounds:

23

vsha2_ms vms_dst, vms_src # Update message states by 16 rounds

vsha2_ws vws, vms, rnd # Update working states by 16 rounds

vsha2_hs vhs, vm # Update hash states (all rounds); may be DPA resistant

vhs: vector of vl (SEW) elements of the current/next hash states

vm: vector of vl (2*SEW) elements of the current input message chunks

Thank You!

Richard Newell

richard.newell@microchip.com

24Microchip Confidential and Proprietary © 2019

