
Survey of Notable Security-Enhancing

Activities in the RISC-V Universe

G. Richard Newell

Cryptarchi ‘19 (June 25)

 A free and open ISA developed at UC Berkeley
 Via a permissive BSD license

 ISA designed for
 Simplicity - < 50 instructions required to run Linux

 Longevity – standardized instructions are fixed, your code runs forever

 RISC-V foundation setup to
 Protect the ISA

 Foster adoption

 RISC-V is not an open source processor
 Although open source implementations will exist

 Provides everyone an “architectural” license to innovate

Have you heard of RISC-V?

 RISC-V ISA based microarchitecture compared to a roughly comparable-in-performance

ARM CPU implemented in the same silicon process:

UCB “Rocket” single-issue, in-order, 5-stage pipeline, single- and double-precision floating point, 64-bit RV64G ISA microarchitecture

ARM “Cortex-A5”, single-issue, in-order, single- and double-precision floating point, 8-stage pipeline, 32-bit ARMv7 ISA microarchitecture

RISC-V Area and Power Advantage

Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic and K. Asanovic, "A45nm 1.3GHz 16.7 Double-Precision

GFLOPS/W RISC-V Processor with Vector Accelerators," in European Solid State Circuits Conference (ESSCIRC), 2014

64 bit machine

But only ½ the area

Better performance

At ½ the power

Board of DirectorsSemiconductor OEMsAcademia & ResearchDatacenterModern fabsEmerging ApplicationsSystem OEMsDebug, OS and ToolsEDA, IP and SupportRISC-V IP Providers

 Chip Organizations

RISC-V Members
Through a Security Filter

 Defense Companies

 Security IP  Security Services and Tools

• Application Denied

Some Notable RISC-V Security
Activities in Academia

 Tagged memory, Enclaves, CFI protection, Side

Channels, etc.

 Many cores incl. popular PULP cores, Timing channels

mitigation

 Tagged memory (Cambridge Univ.)

 (TEE)

 Sanctum TEE

DARPA SSITH Program

 Addressing Cyber Threats w/ HW; ~$60M spend

 RISC-V mandated as demonstration vehicle

 ~Half-dozen HW performers

 Plus analysis and red teaming (Galois)

Correctness Proofs

MIT Cornell

Information Flow

Tracking

Draper Labs

Multi-security policy

enforcement w/ tags

Lockheed Martin

Isolation & bounds

checking w/ tags

SRI International

Memory protection

w/ tags (CHERI)

Univ. of Michigan

Cyber-attack

countermeasure

using churn

UCSD

Adaptive use of

encryption

RISC-V Foundation
Security Groups Organization

8

Board of Directors

Marketing Technical Standing

Committees

∙∙∙ Etc.PrivilegeTask GroupsAPAC Events ∙∙∙ Etc.

Security

TEE Crypto.

(C) Dr. Helena Handschuh (Rambus)

(VC) Dr. Joseph Kiniry (Galois)

98 members

(C) Joe Xie (Nvidia)

(VC) Nick Kossifidis (ICS-Forth)

134 menbers

(C) Richard Newell (Microchip)

(VC) Open

71 members

Augmented ISA

Activity of Note: Formal Spec

Putting it all Together:
The RISC-V Security Stack

RISC-V ISA

RISC-V Implementation

Formal Specification

Compliance Suite

Augmented ISA

(Secure SBI)
Formal Specification

Secure MicroKernel

(e.g. seL4)
Formal Specification

RichOS (e.g. Linux)

About the TEE Task Group

 One of the most popular groups (129 registered members)

 Regular conference calls / mailing list

 Its mission is:
 To define an architecture specification for supporting Trusted Execution

Environments on RISC-V processors

 To provide necessary implementation guidelines and/or recommendations
in order to assist developers to realize the specification

 To enable the development of necessary components (hardware and
software) to support the specification

Work in progress

 On the hardware side

 Modifications on the Physical Memory Protection (PMP) mechanism

 Proposal for an I/O Physical Memory Protection (IOPMP) block

 Proposal for a Control Flow Integrity (CFI) extension

 On the software side

 Secure Monitor architecture

 TODO

 Secure Boot

 ...

RISCV TEE Core Arch

 Embedded Profile
 M/U mode

 Physical Memory Protection

 (Optionally) User Mode Interrupt

• Application Profile
• M/S/U mode

• Virtual Memory (SV32/SV39/SV48)

• Physical Memory Protection (PMP)

RISCV TEE SOC Arch

 Embedded Profile
 IO Physical Memory

Protection

• Application Profile
• SMMU/IOMMU

• IO Physical Memory Protection

Proposed PMP modifications

 Rationale - Prevent M mode from accessing memory that belongs to S/U modes, to provide

the equivalent of S mode's sstatus.SUM bit

 We want to have locked rules that are only enforced on M mode but not on S/U modes (e.g.

to allow M mode to only have execute permission, without also allowing S/U to have the

same privilege)

 Say hello to Machine Mode Isolation bit on mstatus (mstatus.MMI) !

M-mode access to U/S

Memory fails!

I/O Physical Memory Protection
Proposal

 Protects physical memory from all memory masters in system

 Supports N memory masters sharing one IOPMP, or one IOPMP for one memory master

 Supports both 32bit and 64bit RISC-V implementations

 Scalable number of entries

 Supports error reporting

Control Flow Integrity
extension proposal

Secure Monitor’s architecture

 Current implementations from group members
 MultiZone™ from HexFive (https://hex-five.com/products/)

 Keystone from UC Berkeley (https://keystone-enclave.org/)

 A lot of work to be done !
 Define APIs between TEEs and between TEEs and the rest of the world (we need to work together

with the upcoming platform specification task group e.g. for the SBI part)

 Define a memory isolation scheme using PMP (there is a draft proposal on that)

 Define a memory isolation scheme for I/O PMP

 Define mechanisms for handling multiple harts

 Define mechanisms for interupt handling / delegation

 Define common format for TEE binaries (e.g. ELF with extras)

 Write code for all of the above and test it

 Provide an SDK

 ...

Base Crypto Extension:
AES Round-based instructions

 These instructions perform a round of AES encryption or decryption

vaese vData, vRndKey # encrypt

vaeselast vData, vRndKey # encrypt last round

vaesd vData, vRndKey # decrypt

vaesdlast vData, vRndKey # decrypt last round

.vv and .vs variants; maskable; SEW=128, vrep is ignored

 Data Input (vData) – Vector register with vl 128-bit elements

 Input round: Input message plaintext (to be encrypted) or ciphertext (to be decrypted)

 Other rounds: Current AES intermediate round state from previous round

 Key Input (vRndKey) – Vector with vl 128-bit round keys (.vv); or with 1 shared round key (.vs)

 Previously computed from the AES Crypto key by key-expansion commands.

 The round key can be pre-computed and stored or computed on-the-fly

 Round keys are always 128 bits (AES Crypto key can be 128, 192, or 256 bits)

 Data output (vData) – 128-bits, overwrites Data Input (i.e., these commands are destructive)

 Final round: Resulting final ciphertext (when encrypting) or plaintext (when decrypting)

 Other rounds: Current AES intermediate round state

Ken Dockser- RISC-V Workshop June 2019

Key Expansion

commands not

shown

Extended Crypto Extension:
AES All-Rounds Instructions

 These instructions perform all rounds (10-14) of AES encryption or decryption

vaese128 vData, vKey # encrypt (all 10 rounds), 128-bit raw AES key (w0-3)

vaese192 vData, vKey # encrypt (all 12 rounds), 2*SEW 192-bit raw AES key (w0-5)

vaese256 vData, vKey # encrypt (all 14 rounds), 2*SEW 256-bit raw AES key (w0-7)

vaesd128 vData, vRndKey # decrypt (all 10 rounds), Last 128-bit round key (w40-43)

vaesd192 vData, vRndKey # decrypt (all 12 rounds), 2*SEW Last two round keys (w44-47, w48-51)

vaesd256 vData, vRndKey # decrypt (all 14 rounds), 2*SEW Last two round keys (w52-55, w56-59)
SEW = 128

For 192 and 256 the vData input/output are narrower (128 bits) than the 2*SEW (256 bit) key elements

 Destructive – saves opcode space

 Vector-Scalar variant – key shared by all elements

 Key-expansion functionality built in (unlike the single-round instructions)

 vKey - standard AES key

 vRndKey: last one or two standard round keys
Ken Dockser- RISC-V Workshop June 2019

Base Extension: SHA-2 family of
secure hashes

 Vector instructions for two underlying algorithms (polymorphic):

 SHA-256: Consumes 512 bits of message per 64 rounds (SEW=256)

 SHA-512: Consumes 1024 bits of message per 80 rounds (SEW=512)

 Four additional simple variants supported using above instructions

 Based on SHA-256: SHA-224

 Based on SHA-512: SHA-512/224, SHA-512/256, SHA-384

 4 vector registers (or groups)

 2*SEW Message State - input message in 2*SEW chunks

 Working State - intermediate state between rounds

 Hash State - Accumulates final working state after each 60/84 rounds

Ken Dockser- RISC-V Workshop June 2019

SHA Vector Opcodes

 These instructions perform 16 rounds of SHA-256 or -512:

vms_dst: vector of vl (2*SEW) elements of the next message states

vms_src: vector of vl (2*SEW) elements of the previous message states

vms: vector of vl (2*SEW) elements of the current message states

vws: vector of vl (SEW) elements of the previous working states (input)
and the next working states (after execution, i.e., destructive)

rnd: Immediate value indicating first of next 16 rounds to work on:

(0, 16, … 48) for SHA-256, (0,16,… 64) for SHA-512

 This instruction performs all 64 (or 80) rounds:

23

vsha2_ms vms_dst, vms_src # Update message states by 16 rounds

vsha2_ws vws, vms, rnd # Update working states by 16 rounds

vsha2_hs vhs, vm # Update hash states (all rounds); may be DPA resistant

vhs: vector of vl (SEW) elements of the current/next hash states

vm: vector of vl (2*SEW) elements of the current input message chunks

Thank You!

Richard Newell

richard.newell@microchip.com

24Microchip Confidential and Proprietary © 2019

