Security Challenges in Cyber-Physical Systems

Francesco Regazzoni

Contents

∍⊳

Cyber-Physical Systems

Francesco Regazzoni 25 June 2019, Pruhonice, Czech Republic

What is an autonomous system?

• Yet another definition....

Autonomous Cyber-Physical System

Computational Element

Some "intelligence"

Network Connected

-Physical

Actuators

э

Cyber-Physical Systems

Francesco Regazzoni 25 June 2019, Pruhonice, Czech Republic

ŀ

Cyber-Physical Systems Schema

ŀ

Cyber-Physical Systems Schema

Cyber-Physical Systems

Applications of Autonomous systems

Medical

Critical Infrastructure

You mention...

Contents

Cyber-Physical Systems

Physical Securit

Security of Machine Learnin

6 Physical on Physical

Cyber on Physical

Francesco Regazzoni 25 June 2019, Pruhonice, Czech Republic

Confidentiality

Attempt to gain access to **data stored/handled** or to the **IP**

It is related to the absence of **undesired malicious modifications**

It is related to the authenticity of **components** and **data**

Security, the big picture

ъ

ŀ

Let's start from the Cyber-

Virus-Malware

Network attacks

You mention...

Malware

Francesco Regazzoni 25 June 2019, Pruhonice, Czech Republic

э

・ロト ・日下・ ・日下

Network Attacks

Francesco Regazzoni 25 June 2019, Pruhonice, Czech Republic

ŀ

Hardware Trojans

Francesco Regazzoni 25 June 2019, Pruhonice, Czech Republic

ŀ

Contents

Cyber-Physical Systems

Physical Security

Long-Term Securi

Security of Machine Learning

6 Physical on Physical

Cyber on Physical

Why Physical Security is so Important Today?

Long Time Ago Past Present

Mainframes Personal Computer Pervasive

Power Analysis Attacks exploit the relation between the power consumed and the processed data.

Example of Differential Power Attacks

Simulate whole embedded processor at SPICE

Countermeasures

Power consumption **independent** from processed key dependent data

Countermeasures

Power consumption **independent** from processed key dependent data

They can be implemented in Software or in Hardware

More Details on Masking

э

< ロ > < 同 > < 回 > < 回 > < □ > <

More Details on Hiding

ъ

Timing Attacks

 Goals: The adversary attempt to recovery the secret key exploiting the time difference of of the instructions

Requirements: Knowledge about the algorithm

Spy process

Hardware performance registers

Visual inspection

Avoid branches dependent from secret data

Compute secret data always in constant time

- Goals: The adversary attempt to recovery the secret key exploiting the relation between a faulty output and the correct one
- **Requirements**: Fault in the right position
- Laser or equivalent
- Control of the power supply

Add space redundancy

Add time redundancy

Contents

Long-Term Security

Cyber on Physical

 Systems are exposed to more powerful attack and to unknown attacks

- Quantum computational power would make insecure our current public key network
- Transition towards post-quantum cryptography is under standardization

"Capability to update cryptographic functionality of a system"

 Possible at algorithmic level or at device level (reconfigurable blocks specifically dedicated to cryptography)

Lightweight

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Contents

Cyber on Physical

Security of Machine learning

Autonomous systems include artificial intelligence

Protecting the IP of AI

Training AI algorithms is a costly process

Parameters of AI algorithms needs to be protected

Protecting from adversarial machine learning

Very relevant case: road signals

Contents

Physical on Physical 6

Cyber on Physical

Physical on Physical

3D printer

ŀ

-

Physical on Physical

< □ > < 同 > <

- ∢ ⊒ →

ŀ

Contents

э

イロト イヨト イヨト

э

イロト イボト イヨト イヨト

э

-∢ ≣ →

•

- ∢ ≣ →

▲ 伊 ▶ ▲ 王

э

We cover only half of the problem...

Thank you for your attention!

mail: regazzoni@alari.ch

Acknowledgment

CERBERO project, EU Commissions H2020 Program, grant agreement N. 732105