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Bias Correctors

Bias correctors decrease input bias, at the price of compression; fundamental
for TRNGs!

1-bit output example: celebrated XOR [Dav02]

Multiple-bit output: non-linear maps [Dic07] or resilient linear codes [Lac08]

How about optimality of assumptions and bounds?
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Bias Correctors

What is exactly bias?

Fix a distribution X ∈ {0, 1}n and a candidate f : {0, 1}n → {0, 1}m for a bias
corrector.
We study one of the following metrics for Z = f (X )

max-bias(Z ) = maxy |Pr[Z = y ]− 2−m|
total-bias(Z ) = 1

2

∑
y |Pr[Z = y ]− 2−m|

For 1-bit Z simplifies to bias(Z ) = |Pr[Z = 1]− Pr[Z = 0]| = |E(−1)Z |.
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Bias Correctors

Bias by Fourier Analysis

Consider linear spaces Fn
2 ≡ {0, 1}n and Fm

2 ≡ {0, 1}m

Compute bias for all linear combinations of the outupt f

f .u(x) =
∑

f (x)i · ui =
⊕

i : ui 6=0

f (x)i

∆(u) = Ex∼X (−1)f .u(x)|

One-dimensional biases ∆(u) are connected to the original bias [Lac08,Gol95]

Bias for a single-valued g : Fn
2 → F2 also computed by the Fourier expansion

(−1)g =
∑
I

ĝI
∏
i∈I

(−1)xi

Works very well under the independent bits model
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Bias Correctors

Bias by Fourier Analysis

The folowing result shows how to connect single- and multidimensional biases.

Theorem (Multidimensional Output Bias / XOR Lemma)

Let ∆ be as before, then

max-bias(f (X )) 6 maxu ‖∆(u)‖∞ [Lac08,Gol95]

total-bias(f (X )) 6 1
2 · 2

m/2 maxu ‖∆(u)‖∞ [Gol95]
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Bias Correctors

Compute Bias with Fourier Analysis - Examples

Example (single-bit output)

If X has independent bits each with bias ε, then f (x) =
⊕

i xi has bias of 1
2 · (2ε)n.

Example (multi-bit output from linear codes)

If X has independent bits each with bias ε, and f : {0, 1}n → {0, 1}m is a linear
code with distance d then |∆(u)| 6 1

2 · (2ε)d for each u.

Example (reslient codes)

A linear (n,m, d) code is t = d − 1 resilient because with n − t unbiased bits the
output is unbiased.
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Some Problems

Better Bias Analysis

Using total bias and sharper bounds on fourier transforms, one gets better bounds
than Lacharme.
Consider inputs with bias ε = 1

4 and a (n,m, t)-resilient linear code. Then

max-bias = 2−t , equivalently min-entropy is m − log(1 + 2m−t)

total-bias = 2
m
2 −t , closeness to the uniform distribution (smooth

min-entropy)

Comparison

In both cases resilience t large enough compared to m.

But the second one preferable for indistinguishability applications (e.g.
ciphers) from the theoretical perspective.
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Some Problems

Removing Independence

Under the Markov model one can work with the conditional input bias defined as

bias(X ) = max
x<n

∣∣E(−1)Xn |X<n = x<n

∣∣
and then previous results hold true with ε = bias(X ).
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Some Problems

Beating XOR Extractors

For a given class of distributions (e.g. bias prior region in the IID model),
how to build an optimal (min-max) corrector?

Some observations for 1-bit correctors 1

XOR is optimal for small bias; for some bias values one can do better!

Dimensionality reduction: under IID bits and with sufficiently many bias
possibilities, the corrector depends on the hamming weight. Search space
shrinks from 22n to 2n.

Dimensionality reduction: under IID bits and symmetric bias prior, the
corrector is symmetric w.r.t. the hamming weight. Search space shrinks to
2n/2

. . .

1Unpublished work
10 / 13



Some Problems

Beating XOR Extractors
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Conclusion

Summary

Other stochastic models for discrete sources?

Trade resilience for entopy (to get condensers)?

Solve min-max for multidimensional outputs?

. . .
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