
18th CryptAarchi Workshop 2022 | Porquerolles, France | Khurram Bhatti

IE-Cache
Counteracting Eviction-Based
Cache Side Channel Attacks

M. Asim Mukhtar1 M. Khurram Bhatti1 Guy Gogniat2

1 Information Technology University, Lahore, Pakistan
2 University of South Brittany, Lorient, France

Outline

• Security Issue

• Background

• Prime+Probe Attack

• Prior countermeasures their Limitations

• Our Proposed Countermeasures

• IE-Cache

• Security and Performance Results

Security Issue

VM-1 VM-2 VM-3

Hypervisor

Hardware

VM-4 VM-5

Caches

Translation
lookaside Buffers

Branch Target
Buffers

Speculative
Execution

Out-of-Order
Execution

Side Channels

Security Issue

Victim
VM-2

VM-3

Hypervisor

Hardware

Attacker
VM-3

Caches

Cache-based side-channel attacks [M.
Werner, USENIX Security 2019]

• Extracting keys of cryptographic
algorithms (RSA, AES, etc).

• Monitoring keystrokes.

• Reading unauthorized address
space.

Background: Caches

Core 1

Cache

DRAMA1

Generate
Memory Access

A1

Core 1

A1

A1A1

Longer
Time

A1

Shorter
Time

Again Generate
Memory Access

A1

Background: Cache structure and Mapping

A 1
Set 0

Set 1

Set 2

Set 4

Set 3

Way 0 Way 1 Way 2 Way 3

Memory Address

Cache

IndexTag

A

B 1

D 1

C 1

E 1

B CDE

Eviction based Cache Side Channel Attacks:
Prime+Probe Attack

Cache

Attacker
Address
Space

Victim
Address
Space

A1 A2 A3 A4Set 0 V1

Shorter Timelonger Time

Set 1

Set 2

Set 3

Set 4

A1

A2

A3

A4

V1

If (secret == 1)
func(V1);

else
func(V5);

V5

Victim Code

Eviction Set

Prior Countermeasures

Attacker
Address
Space

Victim
Address
Space

A2

A1

A3

A4

Set 0

V1

Set 1

Set 2

Set 3

Set 4

Cryptographic Function

key

• ScatterCache [M. Werner,
USENIX Security 2019]

• CEASER [M. K. Qureshi,
MICRO’18]

Way 0 Way 1 Way 2 Way 3

Limitation in ScatterCache and CEASER

1) Prime - Attacker randomly chooses memory
addresses and places them in cache

(let us say attacker accesses A0 to A9)

2) Prune - Attacker ensures that all accessed
addresses are in cache by re-accessing.

3) Call the victim to execute
(victim accesses V1)

4) Probe - Attacker accesses again all
addresses and observes access latency
(A3 is a member of eviction set)

Cache

A2

A1

A3

A4

V1A5

A6

A7

A8

A9

A0

Prime+Prune+Probe technique can reveal eviction sets [A. Purnal et al. , S&P’ 2020]

This technique can find eviction set in 4 seconds in

ScatterCache [A. Purnal et al. , S&P’ 2020]

Cryptographic Function

Limitation in ScatterCache and CEASER

1) Prime - Attacker randomly chooses memory
addresses and places them in cache

(let us say attacker accesses A0 to A9)

2) Prune - Attacker ensures that all accessed
addresses are in cache by re-accessing.

3) Call the victim to execute
(victim accesses V1)

4) Probe - Attacker accesses again all
addresses and observes access latency
(A3 is a member of eviction set)

Cache

A2

A1

A3

A4

V1A5

A6

A7

A8

A9

A0

Prime+Prune+Probe technique can reveal eviction sets [A. Purnal et al. , S&P’ 2020]

Cryptographic Function

This technique can find eviction set in 50 seconds

in CEASER [A. Purnal et al. , S&P’ 2020]

Our Proposed Countermeasures

• Random Replacement Policy based Caches
• IE-Cache : Indirect Eviction Cache

• PCache: Permutation and Indirect Eviction based Cache

• OE-Cache: Fully Associative cache using Indirect Eviction

• Least Recently used based Cache
• 3D-Cache: eviction of least recently used cache line form randomly selected

cache lines using indirect eviction.

• Direct Relation Problem

• Our Hypothesis
• Indirect Eviction of cache line

will make Prime+Prune+Probe
attack impractical

A18

A2 A9 A13 A17

A4 A1 A14

A6 A10 A3

A7 A11 A15

A18

A19

A8 A12 A16

A2

A1

A3

A0

A1

Cryptographic Function

V1

Evicted

Our Perspective About Problem

Way 0 Way 1 Way 2 Way 3

A18

Proposed Solution : IE-Cache

A2 A9 A13 A17

A4 A1 A14

A6 A10 A3

A7 A11 A15

A18

A19

A8 A12 A16

A2

A1

A3

A0

A1

Cryptographic Function

V1

Evicted

V1

A2 A3 A18A1

A13 A17A10 A14 A1 A8A6 A19 A14 A18A12 A16

Non Evicting
Members

Evicting
Members

Non-Evicting cache lines are impractical to find
using Prime+Prune+Probe attack

A19

A12A8

Way 0 Way 1 Way 2 Way 3

Lets Break IE-Cache: Breaking-Branch Technique

IE-Cache

A2

A1

A3

A4

A5

A6

A7

A8

A9

A0

Cryptographic Function

V1

1) Attacker randomly chooses memory
addresses and places them in cache
(let us say attacker accesses A0 to A9)

2) Attacker ensures that all accessed
addresses are in cache by re-accessing.

3) Call the victim to execute
(victim accesses V1)

4) Attacker accesses again all addresses
and observes access latency
(A4 is a member of eviction set)

Evicted

First use Prime+Prune+Probe technique to
find evicting members

Breaking-Branch Technique

IE-Cache

A2

A3

A4

A5

A6

A7

A8

A9

A0

Cryptographic Function

V1 Break Branch to find Non-Evicting Member

1) Attacker again accesses addresses except
one

(let us say attacker accesses all except A1)

2) Attacker ensures that all accessed addresses
are in cache by re-accessing.

3) Call the victim to execute
(victim accesses V1)

4) Attacker accesses again all addresses and
observes access latency of A4
(If A4 does not evict then A1 is the non-evicting
member)

Security Evaluation

• We build functional model of IE-Cache using Python.

• We extracted victim and attacker access to find 1000 evicting and non-evicting
members using Prime+Prune+Probe and breaking-branch technique. Then, we
have averaged 1000 samples to form finding time of one member of eviction set.

• For time analysis, we used following data [A. Purnal et al. , S&P’ 2020]
• cache hit time = 9.5ns,
• cache miss time = 50ns ,
• victim execution time = 0.5ms and
• cache flush time = 3.6ms.

Group Size
Victim

Accesses
Attacker
Accesses

Time (ms)
per

Evicting Member

Time (hr)
Evicting Members

of Eviction set

7000 80.07 1.95E+08 7.16 22

6000 64.12 1.08E+08 4.23 13

5000 442.70 5.76E+07 2.27 7

4000 30143.22 1.65E+09 69.33 213

Time Analysis of Finding Evicting Members

Cache Configuration: 211 cache lines, 4 ways and 2 levels

Increased from 50 seconds to 7 hours

For 3 levels, time to find non-evicting members is 191 hours

Time Analysis of Finding Non-Evicting Members

Group Size
Victim

Accesses
Attacker
Accesses

Time (months)
per

Non-Evicting Member

Time (years)
Non-Evicting
Members of
Eviction set

7000 3.95E+10 1.67E+14 58.37674 311.3426

6000 3.59E+10 5.20E+10 52.73438 281.25

5000 8.47E+08 1.83E+10 1.291233 6.886574

4000 1.69E+08 4.41E+09 0.279948 1.493056

6.8 years required to find one eviction set. Usually attacker requires more than
one eviction set to launch attack.

Cache Configuration: 211 cache lines, 4 ways and 2 levels

For 3 levels, time to find evicting members is 100+ years

IE-Cache: Prime+Probe Complexity

Way Levels
Non-Evicting

Members
Evicting

Members
Memory accesses required

in Prime or Probe phase

Increased
compared to

w/o indirection

Capacity required
in main memory

by an attacker

4
2 64 3072 3136 ×49 196 KB

3 3072 147456 150528 ×2352 9.1 MB

8
2 272 64736 65008 ×239 3.9 MB

3 65008 15407168 15472176 ×56883 944.3 MB

16
2 1136 1209840 1210976 ×1066 73.9 MB

3 1209840 1288479600 1289690576 ×1135291 76.8 GB

32
2 4640 20856800 20861440 ×4496 1.2 GB

3 20856800 93751316000 93772177440 ×20209521 5.4 TB

Assumption: Attacker memory address overlap with the evicting lines of a victim address in a single cache
way.

Performance Evaluation

• We have build the IE-Cache in Zsim simulator [D. Sanchez ISCA 2013].

• We have used weighted speed-up metric to quantify performance.

• We have normalized 4-way IE-Cache performance relative to baseline
architecture.

Baseline Configuration

Cores 2 cores , 2.2 GHz, OoO model

L1 Cache Private, 32kB, 8-way set associative, split D/I

L2 Cache Private, 256kB, 8-way set associative

L3 Cache Shared, 1MB, 16-way set associative

For 3-levels, IE cache outperforms baseline
on most of the loads.

Increasing level of indirection provides high security without compromising the
performance.

PARSEC Benchmark 3.0

Performance Results

Conclusion

• Profiling of eviction set becomes impractical if we build cache based
on indirect eviction.

• IE-Cache provides both high-security and better performance.

• We have applied indirection on caches but these can be extended to
other components of computers such as translation look aside buffers
to prevent side channels.

Our Contributions

• We have figured out the direct relation problem.

• We have solved the problem using indirect eviction and designed the
cache on it – IE-Cache.

• We also have found the possible attack on IE-Cache.

• We have evaluated the security and performance of IE-Cache.

Thank you

