|E-Cache

Counteracting Eviction-Based
Cache Side Channel Attacks

M. Asim Mukhtar! M. Khurram Bhattit Guy Gogniat?

! Information Technology University, Lahore, Pakistan
2 University of South Brittany, Lorient, France

18th CryptAarchi Workshop 2022 | Porquerolles, France | Khurram Bhatti

Outline

* Security Issue

e Background

* Prime+Probe Attack

* Prior countermeasures their Limitations
* Our Proposed Countermeasures
 |[E-Cache

e Security and Performance Results

Security Issue

Hypervisor

Translation Speculative
lookaside Buffers Side Channels Execution
Hardware
Branch Target Out-of-Order

Buffers Caches Execution

Security Issue

Victim
VM-2

Hypervisor
N

Caches

Hardware

Attacker
VM-3

Cache-based side-channel attacks [M.
Werner, USENIX Security 2019]

* Extracting keys of cryptographic
algorithms (RSA, AES, etc).

 Monitoring keystrokes.

 Reading unauthorized address
space.

Background: Caches

Again Generate
Corel
Memory Access

Al
Longer Shorter
Time Time

{ Cache }

4 N

DRAM

Background: Cache structure and Mapping

Memory Address
N

~
/

Tag Index

Set O

Way 0 Wayl Way2 Way3

Set 1

L

Set 2

Set 3

Set 4

Eviction based Cache Side Channel Attacks:

Prime+Probe Attack

Shorter Tanger Time
i Victim Code
Space === :
| If (secret==1) |
set1 | [N BN BB ' func(V1); !
Al | else |
. 2 | [l I I I al b unesy
E « | SR S et
Ad Set 4
L L Ll

Eviction Set Cache

Prior Countermeasures

Attacker
Address
Space

Set 2

Set 3

Set 4

Cryptographic Function

A

A4

WayO0 Wayl Way2 Way3

Victim
Address
Space

ScatterCache [M. Werner,
USENIX Security 2019]

CEASER [M. K. Qureshi,
MICRO’18]

Limitation in ScatterCache and CEASER

Prime+Prune+Probe technique can reveal eviction sets [A. Purnal et al., S&P’ 2020]

addresses and places them in cache
(let us say attacker accesses AO to A9)
A2 A8 AO
E N B D))

Prune - Attacker ensures that all accessed
addresses are in cache by re-accessing.

3) Call the victim to execute
- (victim accesses V1)
4) Probe - Attacker accesses again all
addresses and observes access latency

(A3 is a member of eviction set)
This technique can find eviction set in 4 seconds in

Cache ScatterCache [A. Purnal et al. , S&P’ 2020]

Limitation in ScatterCache and CEASER

Prime+Prune+Probe technique can reveal eviction sets [A. Purnal et al., S&P’ 2020]

addresses and places them in cache
(let us say attacker accesses AO to A9)
A2 A8 AO
E N B D))

Prune - Attacker ensures that all accessed
addresses are in cache by re-accessing.

3) Call the victim to execute
- (victim accesses V1)
4) Probe - Attacker accesses again all
addresses and observes access latency

(A3 is a member of eviction set)
This technique can find eviction set in 50 seconds

Cache in CEASER [A. Purnal et al., S&P’ 2020]

Our Proposed Countermeasures

 Random Replacement Policy based Caches
* |[E-Cache : Indirect Eviction Cache
* PCache: Permutation and Indirect Eviction based Cache
* OE-Cache: Fully Associative cache using Indirect Eviction

 Least Recently used based Cache

* 3D-Cache: eviction of least recently used cache line form randomly selected
cache lines using indirect eviction.

Our Perspective About Problem

* Direct Relation Problem
Cryptographic Function

* Qur Hypothesis

e Indirect Eviction of cache line
will make Prime+Prune+Probe
attack impractical

B W

Evicted

Way0 Wayl Way2 Way3

Proposed Solution : [E-Cache

Cryptographic Function

Way 0O Wayl Way2 Way3

Non Evicting
Members

Evicting /
Members
N\ Non-Evicting cache lines are impractical to find
Evicted using Prime+Prune+Probe attack

Lets Break |E-Cache: Breaking-Branch Technique

First use Prime+Prune+Probe technique to
find evicting members

Cryptographic Function

1) Attacker randomly chooses memory
addresses and places them in cache

(let us say attacker accesses AO to A9)

2) Attacker ensures that all accessed
addresses are in cache by re-accessing.

3) Call the victim to execute
(victim accesses V1)

4) Attacker accesses again all addresses
and observes access latency

(A4 is a member of eviction set)

\
|E-Cache Evicted

Breaking-Branch Technique

Break Branch to find Non-Evicting Member

Cryptographic Function 1) Attacker again accesses addresses except

one
(let us say attacker accesses all except Al)

2) Attacker ensures that all accessed addresses
are in cache by re-accessing.

3) Call the victim to execute
(victim accesses V1)

4) Attacker accesses again all addresses and
observes access latency of A4

(If A4 does not evict then Al is the non-evicting
member)

Security Evaluation

* We build functional model of IE-Cache using Python.

* We extracted victim and attacker access to find 1000 evicting and non-evicting
members using Prime+Prune+Probe and breaking-branch technique. Then, we
have averaged 1000 samples to form finding time of one member of eviction set.

* For time analysis, we used following data [A. Purnal et al. , S&P’ 2020]
e cache hit time =9.5ns,
e cache miss time =50ns,
e victim execution time = 0.5ms and
e cache flush time = 3.6ms.

Time Analysis of Finding Evicting Members

Cache Configuration: 2! cache lines, 4 ways and 2 levels

. Victim Attacker Time (ms) . '!'ime (hr)
Group Size Accesses Accesses per Evicting Members
Evicting Member of Eviction set
7000 80.07 1.95E+08 7.16 22
6000 64.12 1.08E+08 4.23 13
5000 442.70 5.76E+07 2.27 7
4000 30143.22 1.65E+09 69.33 213

Increased from 50 seconds to 7 hours

For 3 levels, time to find non-evicting members is 191 hours

Time Analysis of Finding Non-Evicting Members

Cache Configuration: 2! cache lines, 4 ways and 2 levels

Time (months) Time (years)

Groub Size Victim Attacker or Non-Evicting
P Accesses Accesses . p Members of
Non-Evicting Member . ..

Eviction set

7000 3.95E+10 1.67E+14 58.37674 311.3426
6000 3.59E+10 5.20E+10 52.73438 281.25

5000 8.47E+08 1.83E+10 1.291233 6.886574

4000 1.69E+08 4.41E+09 0.279948 1.493056

6.8 years required to find one eviction set. Usually attacker requires more than
one eviction set to launch attack.

For 3 levels, time to find evicting members is 100+ years

|[E-Cache: Prime+Probe Complexity

. . . Increased Capacity required
Non-Evicting Evicting Memory accesses required . .
Way Levels . i compared to in main memory
Members Members in Prime or Probe phase . i
w/o indirection by an attacker
4 2 64 3072 3136 x49 196 KB
3 3072 147456 150528 x2352 9.1 MB
o 2 272 64736 65008 x239 3.9 MB
3 65008 15407168 15472176 x56883 944.3 MB
16 2 1136 1209840 1210976 x1066 73.9 MB
3 1209840 1288479600 1289690576 x1135291 76.8 GB
3 2 4640 20856800 20861440 x4496 1.2 GB
3 20856800 93751316000 93772177440 x20209521 5.4TB

Assumption: Attacker memory address overlap with the evicting lines of a victim address in a single cache
way.

Performance Evaluation

 We have build the IE-Cache in Zsim simulator [D. Sanchez ISCA 2013].

* We have used weighted speed-up metric to quantify performance.

* We have normalized 4-way |E-Cache performance relative to baseline
architecture.

Baseline Configuration

Cores 2 cores, 2.2 GHz, Oo0O model
L1 Cache Private, 32kB, 8-way set associative, split D/I
L2 Cache Private, 256kB, 8-way set associative

L3 Cache Shared, 1MB, 16-way set associative

Vp)
.t
D
Vp)
)
e
o
@)
C
(q0)
-
S
O
g—
S
Q
an

For 3-levels, |E cache outperforms baseline

05- mm 2 |levels-of-search
04- = 3 |levels-of-search

on most of the loads.

wisainf-Fazx
JOBUDIEOZX
wisazpy-pinyf
jpauup3-pinlf
wysasny-dnpap
jpauupI-dnpap
19413)-doms
jpauuDI-doms
Jausaf-Apog
wiisasnf-Apog
jpauupI-Apog
j2043f-po)q
wisadng-20)q
|pauup3-y30)q
pozx-baif
dnpap-ba.if
pozx-Apoq
pinyj-Apog
dnpap-Apoq
Pogx-Yo0)g
pimy-ya0)q
dnpap-yo)q
woans-jaisaf
Wpays-wysaon
j8saf-wisaznf
WDaIIs-J0 DD
j8siapauup3
wysainyf-oauuo
rozx-piny
p9Zx-dnpap
pinyj-dnpap
baif-doms
basf-Apog
doms-Apog
ba.j-yo0)q
doms-yI0)q
Apog-y20)q

i 1
o s
=

I I 1
L T =
o

= = = = = =

(%) dnpaads pajyblam paznewsoN

PARSEC Benchmark 3.0

Increasing level of indirection provides high security without compromising the

performance.

Conclusion

* Profiling of eviction set becomes impractical if we build cache based
on indirect eviction.

* |[E-Cache provides both high-security and better performance.

* We have applied indirection on caches but these can be extended to
other components of computers such as translation look aside buffers
to prevent side channels.

Our Contributions

* We have figured out the direct relation problem.

* We have solved the problem using indirect eviction and designed the
cache on it — [E-Cache.

* We also have found the possible attack on IE-Cache.

* We have evaluated the security and performance of IE-Cache.

Thank you

