

LASER FAULT INJECTION AGAINST EMBEDDED NEURAL NETWORK MODEL

Mathieu Dumont, Pierre Alain Moëllic, Jean-Max Dutertre, Raphaël Viera

mathieu.dumont@cea.fr

Deployment of Machine Learning models in many IoT devices

- Deployment of Machine Learning models in many IoT devices
- Embedded Neural Networks offer physical access to an attacker

SUMMARY

- Context
- Bit-set fault model
- Laser Fault Injection on embedded neural network
- Conclusion

- Attack on machine learning models
 - Adversarial Example (software attack) is a major threat against DNN. **Massive research efforts** on that field.

• Physical attacks (hardware attack) constitute new threats against DNN. **Upcoming works.**

- Attack on machine learning models
 - Adversarial Example (software attack) is a major threat against DNN. **Massive research efforts** on that field.

• Physical attacks (hardware attack) constitute new threats against DNN. **Upcoming works**.

- Attack on machine learning models
 - Adversarial Example (software attack) is a major threat against DNN. **Massive research efforts** on that field.

• Physical attacks (hardware attack) constitute new threats against DNN. **Upcoming works.**

State of the Art of Fault Injection on embedded Neural Network

ATTACK AGAINST INTEGRITY

- Simulation **parameter-based** attack :
 - First in 2017 [1], Single Bias Attack & Gradient Descent Attack.
 - **Bit-Flip Attack (BFA)** by *Rakin et al.* [2] with Progressive Bit Search method.
- Physical Fault injection on network activation function :
 - Laser Fault Injection by Jakub Breier et al [3].
 - Clock Glitching [4].
- **RowHammer** attack by *Rakin et al.* [5]

State of the Art of Fault Injection on embedded Neural Network

ATTACK AGAINST CONFIDENTIALITY

- Only one model reverse engineering method with fault injection: SNIFF [6], Breier et al.
 - Parameters recovery of the last layer only.
 - Need to know all previous parameters.
- As AES key recovery, Machine Learning model data reverse will be soon a critical topic

State of the Art of Fault Injection on embedded Neural Network

 \rightarrow Focus on robustness characterization

 \rightarrow Fault on quantified networks

 \rightarrow Stealthy and precise attack with minimum faults

- Which parameters to target on NN ?
 - Typical neuron computation:

- Which parameters to target on NN ?
 - Typical neuron computation:

SUMMARY

- Context
- Bit-set fault model
- Laser Fault Injection on embedded neural network
- Conclusion

- Laser bench setup
 - Laser with two independent laser spots at 1064nm (near IR)
 - Target : ARM Cortex M3 running at 8MHz. CMOS 90nm
 - Flash : 128kb NOR Flash
 - Open Backside

- Bit-set fault model [7] at the read time
- Flash memory : constituted of Bit lines (common to all registers) and Word lines (32 bits register).
- A 32-bits word (with only 0) is loaded from the Flash memory and stored in r0 register. Shot at the "ldr" instruction.
- Every bit, from 0 to 31, is forced to 1 one after another, along the X-axis. No difference on Y-axis.

Read operation explanation

Read operation explanation

Read operation explanation

Effect of Laser shot on Floating Gate NMOS explanation

Bit-set fault model explanation

• Floating gate charged, low read current : $I_{READ} < I_{Ref} \rightarrow Read value : '0'$

Bit-set fault model explanation

One-way (unidirectional) fault model → Bit-set fault model

CryptArchi 2022 | DUMONT Mathieu | 30/05/2022 | 21

> Application of bit-set fault model on a float multiplication

- Parallel with neural network multiplication (w_i^j, x_i) with weight w = 2.0 and input x = 4.0.
- Laser shot during the load (ldr) instruction of the "weight" value, before the float multiplication.

> Application of bit-set fault model on a float multiplication

- Parallel with neural network multiplication (w_i^j, x_i) with weight w = 2.0 and input x = 4.0.
- Laser shot during the load (ldr) instruction of the "weight" value, before the float multiplication.

- ✓ The bit-set fault model could induce huge value variation
- ✓ Bit-set is induced on every bit all along the X-axis.

SUMMARY

- Context
- Bit-set fault model
- Laser Fault Injection on embedded neural network
- Conclusion

LASER FAULT INJECTION ON EMBEDDED NEURAL NETWORK

- The targeted Neural Network
 - Iris NN: small network, 4 inputs and 3 outputs
 - Multi-Layer Perceptron (Fully-Connected neural network)
 - Only few neurons and one hidden layer is sufficient.

LASER FAULT INJECTION ON EMBEDDED NEURAL NETWORK

- The targeted Neural Network
 - Iris NN: small network, 4 inputs and 3 outputs
 - Multi-Layer Perceptron (Fully-Connected neural network)
 - Only few neurons and one hidden layer is sufficient

• Need access to inference computation libraries

LASER FAULT INJECTION ON EMBEDDED NEURAL NETWORK

- The targeted Neural Network
 - Iris NN: small network, 4 inputs and 3 outputs
 - Multi-Layer Perceptron (Fully-Connected neural network)
 - Only few neurons and one hidden layer is sufficient
 - Need access to inference computation libraries
 - During the multiplication (w_i^j, x_i) the load "ldr" instruction of the weight value is surrounded by a trigger

- Laser fault injection characterization on one weight
 - A laser shot is induced during the load of only one of the four weights

$w_1 = 32 (0010000)_2$

- ✓ Bit-sets induced on the weight of an embedded neural network.
- ✓ Variation of the weight value depending on the laser spot position on the X-axis.

Optical Lens x5 (Spot of 15μ m) Pulse power : 300 mA (~170mW) Pulse Width : 200 ns Delay : 500 ns Step on X = 2μ m

- Laser fault injection characterization on several weights
 - A laser shot is induced during the load of every weight from neurons

- Every weights of the network could be **precisely** faulted
- ✓ With **bi-spot** we can induce 2 bit-sets at the same time:
 → on 1 weight:

Example: $w_2 = 81 (b'01010001)$ After bi-spot attack; $w_2 = 241 (b'11110001)$

 \rightarrow On 2 different weights

- > Neural network robustness characterization against Laser Fault Injection
 - Iris model with one deep layer of 10 neurons (40 weights on the first layer).
 - The laser spot move along the X-Axis of the flash memory (with a step of 2µm).
 - At each X-step, 50 inferences are performed and outputs compared with software results to determine the embedded model accuracy. During one inference, all weight loading ('ldr') trigger a laser shot.

- Accuracy of embedded model without attack = 93%
- Total number of bits = 320bits

Optical Lens x5 (Spot of 15µm) Pulse power : 300 mA (~170mW) Pulse Width : 200 ns Delay : 500 ns Step on X = 2µm

- Neural network robustness characterization against Laser Fault Injection
 - Iris model with one deep layer of 10 neurons (40 weights on the first layer).
 - The laser spot move along the X-Axis of the flash memory (with a step of 2µm).
 - At each X-step, 50 inferences are performed and outputs compared with software results to determine the embedded model accuracy. During one inference, all weight loading ('ldr') trigger a laser shot.

Accuracy of Iris model with 10 neurons

20

- Neural network robustness characterization against Laser Fault Injection
 - Iris model with one deep layer of 10 neurons (40 weights on the first layer).

Delay : 500 ns

Step on $X = 2\mu m$

- The laser spot move along the X-Axis of the flash memory (with a step of 2µm).
 - At each X-step, 50 inferences are performed and outputs compared with software results to determine the embedded model accuracy. During one inference, all weight loading ('ldr') trigger a laser shot.

- Neural network robustness characterization against Laser Fault Injection
 - Iris model with one deep layer of **20** neurons (**80 weights** on the first layer).

Optical Lens x5 (Spot of 15µm) Pulse power : 300 mA (170mW) Pulse Width : 200 ns Delay : 500 ns Step on X = 2µm

> Neural network robustness characterization against Laser Fault Injection

• LFI characterization limitation : Due to memory flash storage architecture, only 1/4 of all weights could be faulted during one inference.

- > Neural network robustness characterization against Laser Fault Injection
 - LFI characterization limitation : Due to memory flash storage architecture, only **1/4** of all weights could be faulted during one inference.
 - With the two spots, 2 weights columns could be targeted, leading to **1/2** of the weights that be can faulted.

- Neural network robustness characterization against Laser Fault Injection bi-spot
 - Study of the model accuracy under **bi-spot laser** characterization. Iris model with one deep layer of 10 neurons.

<u>For both lens :</u> Optical Lens x5 (Spot of 15µm) Pulse power : 300 mA (~170mW) Pulse Width : 200 ns Delay : 500 ns Step on X = 2µm

SUMMARY

- Context
- Bit-set fault model
- Laser Fault Injection on embedded neural network
- Conclusion

- Fault injection analysis on embedded neural network is still in its infancy.
 - Laser fault injection is a powerful mean to assess the **robustness** of an embedded model.
- Bit-set fault model allows to induce **precise** and **repeatable** faults on the **weights** of a neural network.
- We achieve an **accuracy drop** of a neural network with a laser fault injection targeting the weights.
- With bi-spot laser characterization, more weights can be faulted in the same inference.

- Use simulations to predict the most sensitive bits to fault with laser fault injection.
- Robustness characterization on deeper neural networks
- Other attack vectors (Instructions, activation functions...)
- Model reverse engineering with fault injection
- Evaluate state-of-the-art defense strategies against fault injection in a ML model context

THANK YOU

CryptArchi 2022

LASER FAULT INJECTION AGAINST EMBEDDED NEURAL NETWORK MODEL

Mathieu DUMONT // CEA LETI // mathieu.dumont@cea.fr

CEA-Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 avenue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

- [1] Y. Liu, L. Wei, B. Luo, and Q. Xu, *Fault injection attack on deep neural network*, IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, 2017.
- [2] A. S. Rakin, Z. He, and D. Fan, *Bit-flip attack: Crushing neural network with progressive bit search,* in IEEE International Conference on Computer Vision, 2019.
- [3] X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin, and Y. Liu, *Security Evaluation of Deep Neural Network Resistance against Laser Fault Injection*, Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA, 2020.
- [4] Yao, Fan, A.Rakin, et al. , *DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted* Chain of Bit Flips." 29th USENIX Security Symposium, 2020.
- [5] Y. Fukuda, K. Yoshida, and T. Fujino, *Fault Injection Attacks Utilizing Waveform Pattern Matching against Neural Networks Processing on Microcontroller*, IEICE Transactions on Fundamentals of Electronics Communications and Computer Science, 2022.
- [6] J. Breier, D. Jap, X. Hou, S. Bhasin and Y. Liu, *SNIFF: Reverse Engineering of Neural Networks With Fault Attacks,* in IEEE Transactions on Reliability, 2021.
- [7] B. Colombier, A. Menu, J. M. Dutertre, P. A. Moellic, J. B. Rigaud, and J. L. Danger, *Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller*, IEEE International Symposium on Hardware Oriented Security and Trust, HOST, 2019.