%\Re Ts
of Co

§/\/

|
RN
Q§</’/ \\(‘74,
Q?-.‘ /. \\,p
= |
Qo /
R /
),
Vo g1t

~ ARCHI-SEC

3

LIRMM

g the Silicon Area Overhead
unter-Based Rowhammer
Mitigations

Loic FRANCE, Florent BRUGUIER, David NOVO, Maria MUSHTAQ and Pascal BENOIT

OOOC DRAM architecture

DRAM architecture

.......

| | | r_—

i

@
=
0
I
=
\ u

Memory cell

>

Time
\ Voltage accross a storage capacitor

OO Rowhammer
.

]
]
]
l\
o
S
5 i
© i
[
auIIq I/

e
— | C— —‘:I_|
B B B B : _
Goupling leaks

o

>

(M)

—

= ; :
N Memory cell

]] | |
Sense Amplifier

bit =
)
N R ok T -
K
©°
Qb—-—-—-=-=-=-4——-————4 -
bit =0 5
o
E < 64ms >
>
Time

_ Voltage accross a storage capacitor)

%% Rowhammer

DRAM bank
Loop:

" Avoid row hit mov (),
ggressor row VOId TOW NS mov ()
Victim cell (row(Y) # row(X)) J

\ clflush ()
- r
Victim row Avoid cache hits clflush ()

\ mfence

jmp Loop

Kim, Yoongu, et al. "Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors." ISCA, 2014

OOOC Rowhammer objectives

[1] Lipp, Moritz, et al. "Nethammer: Inducing rowhammer faults through network requests." EuroS&PW, 2020.

[2] Kwong, Andrew, et al. "Rambleed: Reading bits in memory without accessing them." SP, 2020.

[3] Seaborn, Mark, and Thomas Dullien. "Exploiting the DRAM rowhammer bug to gain kernel privileges." Black Hat, 2015.

[4] Gruss, Daniel, Clémentine Maurice, and Stefan Mangard. "Rowhammer. js: A remote software-induced fault attack in javascript." DIMVA, 2016.
[5] de Ridder, Finn, et al. "SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript." USENIX Security, 2021.

OOOC Rowhammer objectives

[1] Lipp, Moritz, et al. "Nethammer: Inducing rowhammer faults through network requests." EuroS&PW, 2020.

[2] Kwong, Andrew, et al. "Rambleed: Reading bits in memory without accessing them." SP, 2020.

[3] Seaborn, Mark, and Thomas Dullien. "Exploiting the DRAM rowhammer bug to gain kernel privileges." Black Hat, 2015.

[4] Gruss, Daniel, Clémentine Maurice, and Stefan Mangard. "Rowhammer. js: A remote software-induced fault attack in javascript." DIMVA, 2016.
[5] de Ridder, Finn, et al. "SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript." USENIX Security, 2021.

%% Rowhammer mitigation

In hardware:

e Randomly refresh neighbors of
activated rows [1]

* Detect most activated rows with
counters [2][3][4]

In software:

e Isolate sensitive data from unsafe <=
programs in the memory [5]

 Read performance counters to detect
attack signatures and stop processes

[6]

Highly modular, Low performance cost,

High performance cost Limited modularity,
Silicon area overhead

[1] Kim, Yoongu, et al. "Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors." ISCA, 2014.

[2] Park, Yeonhong, et al. "Graphene: Strong yet lightweight row hammer protection." MICRO, 2020.

[3] Yaglikgi, A. Giray, et al. "Blockhammer: Preventing rowhammer at low cost by blacklisting rapidly-accessed dram rows." HPCA, 2021.

[4] Lee, EQjin, et al. "TWiCe: Time window counter based row refresh to prevent row-hammering." CAL, 2017.

[5] Konoth, Radhesh Krishnan, et al. "ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks.« OSDI/, 2018.

[6] Alam, Manaar, et al. "Performance counters to rescue: A machine learning based safeguard against micro-architectural side-channel-attacks." Cryptology
ePrint Archive (2017).

%% Rowhammer mitigation

In hardware:

e Randomly refresh neighbors of
activated rows [1]

* Detect most activated rows with

counters [2][3][4]

In software:

e Isolate sensitive data from unsafe <=
programs in the memory [5]

e Read performance counters to detect
attack signatures and stop processes

[6]

Highly modular, Low performance cost,

High performance cost Limited modularity,
Silicon area overhead

[1] Kim, Yoongu, et al. "Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors." ISCA, 2014.

[2] Park, Yeonhong, et al. "Graphene: Strong yet lightweight row hammer protection." MICRO, 2020.
[3] Yaglikgi, A. Giray, et al. "Blockhammer: Preventing rowhammer at low cost by blacklisting rapidly-accessed dram rows." HPCA, 2021.

[4] Lee, Eojin, et al. "TWiCe: Time window counter based row refresh to prevent row-hammering." CAL, 2017.

[5] Konoth, Radhesh Krishnan, et al. "ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks.« OSDI/, 2018.

[6] Alam, Manaar, et al. "Performance counters to rescue: A machine learning based safeguard against micro-architectural side-channel-attacks.” Cryptology
ePrint Archive (2017).

OOOC Hardware mitigations principle

Indirection
table

Mitigation

11

OOOC Counter-based hardware mitigations principle

(At)

Increment
counters
5 5 @
Indirection
table
Mitigation Prever.1t
corruption
1 counter / row ? (END >

= 64K counters / bank (64K rows / bank)
= 1M counters / rank (16 banks / rank) 12

o

Graphene

Misra-Gries Algorithm:

Row | Count

O0x1010 5
0x2020 7
0x3030 3
Spillover 2

S=§5+1

Mli], = x

REF
neighbors
of x

o

-

END >:

14

%% Graphene

Misra-Gries Algorithm: (acx)
CEmET CEmET

0x1010 0x1010 6
0x2020 7 w 0x2020 7 0
0x3030 3 0x3030 3

Spillover 2 Spillover 2

S=S5S+1 Mli], = x s Ml[i] ++

REF
neighbors
of x

\4

o 3
" END .

O

O

Misra-Gries Algorithm:

fon o

0x1010
0x2020
0x3030

Spillover

0x1010
0x2020
0x3030

Spillover

2

o)

Graphene

0x1010
0x2020
0x3030

Spillover

Row | Count

6
7
3
2

(actx)

S=5+1

A\ 4

Mli], = x

MIi] ++

REF
neighbors
of x

A\ 4

1 N
_ END)

16

O

O

Misra-Gries Algorithm:

fon o

0x1010
0x2020
0x3030

Spillover

Row | Count

0x1010
0x2020
0x3030

Spillover

2

6
7
3
3

Graphene

o)

o®®

o

o)

Row | Count

0x1010
0x2020
0x3030

Spillover

o _Lcons

0x1010
0x2020
0x5050

Spillover

6
7
3
2

~

(actx)

S=§5+1

\ 4

Mlil, = x

M]Ji] ++

REF
neighbors
of x

A\ 4

o -
" END .

17

%% Graphene

Misra-Gries Algorithm:

Row | Count

\

0x1010 5
OXZOZO 7 > Nent‘ry
0x3030 3
. o Nentry \T 4
Spillover 2 RH ~

W : maximum number of ACT during trery;

Try: Rowhammer corruption threshold.

%OC BlockHammer

Counting Bloom Filter (CBF):

Block
further
access to x

C END D

19

O BlockHammer
()

Counting Bloom Filter (CBF):

k
l KW—1

B kwh (1 1

=1 (1)) (1-3)
I<Npj,

P W = W (k t.)

X — X — .
Fp X — m P cons

W : maximum number of ACT during trpry;
Npg;: Rowhammer detection threshold;

k: number of hash functions

m: number of counters;

20

%% How many counters 7

Graphene and BlockHammer: Bank-level implementation, size = K X W

Size=KXW
Bank-level
implementation

22

How many counters 7

Graphene and BlockHammer: Bank-level implementation, size = K X W

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Rank-level size : 16 X bank-level size

W': maximum number of ACTs during trgry, at bank-level
Whg: maximum number of ACTs during tpgry at rank-level = 16 X W ?

Size=K XW
Size=KXW
Size=KXW
Size=KXW

Size=16 XK X W

23

%% Memory bandwidth at different levels

tre Same-bank ACT interval 45.8ns

LREFI trrC t
trerw Refresh cycle duration 64ms < ~ == REFW >
trpr; Refresh interval 7.8us A
trrc Refresh command duration 350ns ACT
Bank level:

W =

_ trrc
LREFW (1 F)
REFI/ [1 33

tre

24

OOOC Memory bandwidth at different levels

tre Same-bank ACT interval 45.8ns
tREFI trrC tREFW
trerw Refresh cycle duration 64ms : i
trpr; Refresh interval 7.8us

trrc Refresh command duration 350ns

traw Four-activate window 21.67ns

Bank level:

LRFC
Fw tRerl/ | _ 133M
tre ’ By — B, are 5 banks of a single rank

W =

Rank level:

trFC
trEFW (1 B tREFI)

Wr = ~11,3M # 16 X W

tpaw ~ 4

N

5

Reduction in considered ACTs

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Rank-level

implementation

Total considered ACTs : 16 X W = 21.28M Total considered ACTs : Wy = 11.3M
S~—0_ A

—47% ACTs

%%Consequences for Graphene & BlockHammer

. Bank-level implementation Rank-level implementation m

& 162 entries 1377 entries

f'g’_ entry size: 30 bits*. entry size: 34 bits** —40%
@ Total size: 16 X 162 X 30 bits = 9. 61KiB Total size: 1377 X 162 X 34 bits = 5. 79KiB

G)

o 2048 counters 16384 counters™**

E 13 bits / counter 13 bits / counter

& Total size: 16 X 2048 X 13 bits = 52KiB Total size: 16384 X 13 bits = 26KiB —50%
S

o

)

*: row address — 16 bits, counter — 13 bits, overflow bit — 1 bit
**: row address — 20 bits, counter — 13 bits, overflow bit — 1 bit

**%. keeps the same Prp as for bank-level implementation
27

% Reduction in storage requirements

16 x W [Why 21.28M 11.3M —47%
Graphene 9.61KiB 5.79KiB —40%
BlockHammer 52KiB 26KiB —50%

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

CERIGEE]
implementation

Bank-level
implementation

Total considered ACTs: 16 X W = 21.28M

S~—0 A

Rank-level
implementation

Total considered ACTs : W = 11.3M

—40 — 50% storage

28

% Reduction in storage requirements — DDR5
—m

32X W [Wy 21.15M —62%
Graphene 9.38KiB 4.05KiB —57%
BlockHammer 52KiB 19.5KiB —62.5% (with same Prp as with DDR4)

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

CERIGEE]
implementation

Bank-level
implementation

Total considered ACTs: 32 X W = 21.15M

S~—0 A

Rank-level

implementation

Total considered ACTs : Wp = 8M

—57 — 62.5% storage

29

O

.

.

Does it still work as it should ?

Corruption
module

Computer Architecture Simulator

Mitigation

France, Loic, et al. "Implementing Rowhammer Memory Corruption in the gem5 Simulator."
32nd International Workshop on Rapid System Prototyping (RSP). IEEE, 2021.

30

LIRMM

d@

()
O

Thank you for your attention

_/

