
Reducing the Silicon Area Overhead
of Counter-Based Rowhammer

Mitigations

Loïc FRANCE, Florent BRUGUIER, David NOVO, Maria MUSHTAQ and Pascal BENOIT

1

2

DRAM architecture

M
em

. C
trl.

Channels

Memory Modules

DRAM
chip

DRAM
chip

DRAM
chip

Bank Bank Bank

Bank Bank Bank Bank

C
h

ip
 I/

O

Caches

MAT

MAT

MAT

MAT

CPU

3

DRAM architecture

Memory cell

4

Rowhammer

Memory cell

5

Rowhammer

Kim, Yoongu, et al. "Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors." ISCA, 2014

7

Rowhammer objectives

Rowhammer

Privilege
escalation

[3][4][5]

Sensitive information
retrieval

[2]

Crash
[1]

[1] Lipp, Moritz, et al. "Nethammer: Inducing rowhammer faults through network requests." EuroS&PW, 2020.
[2] Kwong, Andrew, et al. "Rambleed: Reading bits in memory without accessing them." SP, 2020.
[3] Seaborn, Mark, and Thomas Dullien. "Exploiting the DRAM rowhammer bug to gain kernel privileges." Black Hat, 2015.
[4] Gruss, Daniel, Clémentine Maurice, and Stefan Mangard. "Rowhammer. js: A remote software-induced fault attack in javascript." DIMVA, 2016.
[5] de Ridder, Finn, et al. "SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript." USENIX Security, 2021.

8

Rowhammer objectives

Rowhammer

Privilege
escalation

[3][4][5]

Sensitive information
retrieval

[2]

Crash
[1]

[1] Lipp, Moritz, et al. "Nethammer: Inducing rowhammer faults through network requests." EuroS&PW, 2020.
[2] Kwong, Andrew, et al. "Rambleed: Reading bits in memory without accessing them." SP, 2020.
[3] Seaborn, Mark, and Thomas Dullien. "Exploiting the DRAM rowhammer bug to gain kernel privileges." Black Hat, 2015.
[4] Gruss, Daniel, Clémentine Maurice, and Stefan Mangard. "Rowhammer. js: A remote software-induced fault attack in javascript." DIMVA, 2016.
[5] de Ridder, Finn, et al. "SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript." USENIX Security, 2021.

9

Rowhammer mitigation

[1] Kim, Yoongu, et al. "Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors." ISCA, 2014.
[2] Park, Yeonhong, et al. "Graphene: Strong yet lightweight row hammer protection." MICRO, 2020.
[3] Yağlikçi, A. Giray, et al. "Blockhammer: Preventing rowhammer at low cost by blacklisting rapidly-accessed dram rows." HPCA, 2021.
[4] Lee, Eojin, et al. "TWiCe: Time window counter based row refresh to prevent row-hammering." CAL, 2017.
[5] Konoth, Radhesh Krishnan, et al. "ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks.« OSDI, 2018.
[6] Alam, Manaar, et al. "Performance counters to rescue: A machine learning based safeguard against micro-architectural side-channel-attacks." Cryptology
ePrint Archive (2017).

?
In hardware:
• Randomly refresh neighbors of

activated rows [1]
• Detect most activated rows with

counters [2][3][4]

Low performance cost,
Limited modularity,
Silicon area overhead

In software:
• Isolate sensitive data from unsafe

programs in the memory [5]
• Read performance counters to detect

attack signatures and stop processes
[6]

Highly modular,
High performance cost

10

Rowhammer mitigation

[1] Kim, Yoongu, et al. "Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors." ISCA, 2014.
[2] Park, Yeonhong, et al. "Graphene: Strong yet lightweight row hammer protection." MICRO, 2020.
[3] Yağlikçi, A. Giray, et al. "Blockhammer: Preventing rowhammer at low cost by blacklisting rapidly-accessed dram rows." HPCA, 2021.
[4] Lee, Eojin, et al. "TWiCe: Time window counter based row refresh to prevent row-hammering." CAL, 2017.
[5] Konoth, Radhesh Krishnan, et al. "ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks.« OSDI, 2018.
[6] Alam, Manaar, et al. "Performance counters to rescue: A machine learning based safeguard against micro-architectural side-channel-attacks." Cryptology
ePrint Archive (2017).

?
In hardware:
• Randomly refresh neighbors of

activated rows [1]
• Detect most activated rows with

counters [2][3][4]

Low performance cost,
Limited modularity,
Silicon area overhead

In software:
• Isolate sensitive data from unsafe

programs in the memory [5]
• Read performance counters to detect

attack signatures and stop processes
[6]

Highly modular,
High performance cost

11

Hardware mitigations principle

CPU

M
em

o
ry

C

o
n

tr
o

lle
r

DRAM

CPU DRAM

Mitigation

request Indirection
table

12

Counter-based hardware mitigations principle

CPU

M
em

o
ry

C

o
n

tr
o

lle
r

DRAM

CPU DRAM

Mitigation

request Indirection
table

ACT

Increment
counters

Counters
> Thr

Prevent
corruption

END
1 counter / row ?

⟹ 64K counters / bank (64K rows / bank)
⟹ 1M counters / rank (16 banks / rank)

Misra-Gries Algorithm:

14

Graphene

ACT 𝑥

∃𝑖
𝑀 𝑖 𝑟 = 𝑥

∃𝑖
𝑀 𝑖 𝑐 = 𝑆

𝑆 = 𝑆 + 1 𝑀 𝑖 𝑟 = 𝑥 𝑀 𝑖 𝑐++

𝑀 𝑖 𝑐 = 𝑇
REF

neighbors
of x

END

Row Count

0x1010 5

0x2020 7

0x3030 3

Spillover 2

Misra-Gries Algorithm:

15

Graphene

ACT 𝑥

∃𝑖
𝑀 𝑖 𝑟 = 𝑥

∃𝑖
𝑀 𝑖 𝑐 = 𝑆

𝑆 = 𝑆 + 1 𝑀 𝑖 𝑟 = 𝑥 𝑀 𝑖 𝑐++

𝑀 𝑖 𝑐 = 𝑇
REF

neighbors
of x

END

Row Count

0x1010 5

0x2020 7

0x3030 3

Spillover 2

Row Count

0x1010 6

0x2020 7

0x3030 3

Spillover 2

0x1010

Misra-Gries Algorithm:

16

Graphene

ACT 𝑥

∃𝑖
𝑀 𝑖 𝑟 = 𝑥

∃𝑖
𝑀 𝑖 𝑐 = 𝑆

𝑆 = 𝑆 + 1 𝑀 𝑖 𝑟 = 𝑥 𝑀 𝑖 𝑐++

𝑀 𝑖 𝑐 = 𝑇
REF

neighbors
of x

END

Row Count

0x1010 5

0x2020 7

0x3030 3

Spillover 2

Row Count

0x1010 6

0x2020 7

0x3030 3

Spillover 2

0x1010

Row Count

0x1010 6

0x2020 7

0x3030 3

Spillover 3

Misra-Gries Algorithm:

17

Graphene

ACT 𝑥

∃𝑖
𝑀 𝑖 𝑟 = 𝑥

∃𝑖
𝑀 𝑖 𝑐 = 𝑆

𝑆 = 𝑆 + 1 𝑀 𝑖 𝑟 = 𝑥 𝑀 𝑖 𝑐++

𝑀 𝑖 𝑐 = 𝑇
REF

neighbors
of x

END

Row Count

0x1010 5

0x2020 7

0x3030 3

Spillover 2

Row Count

0x1010 6

0x2020 7

0x3030 3

Spillover 2

0x1010

Row Count

0x1010 6

0x2020 7

0x3030 3

Spillover 3

Row Count

0x1010 6

0x2020 7

0x5050 4

Spillover 3

0x5050

Misra-Gries Algorithm:

18

Graphene

𝑁𝑒𝑛𝑡𝑟𝑦 =
𝑊

𝑇𝑅𝐻 ÷ 4

𝑊: maximum number of ACT during 𝑡𝑅𝐸𝐹𝑊;

𝑇𝑅𝐻: Rowhammer corruption threshold.

Row Count

0x1010 5

0x2020 7

0x3030 3

Spillover 2

𝑁𝑒𝑛𝑡𝑟𝑦

Counting Bloom Filter (CBF):

19

BlockHammer

ACT 𝑥

ℎ1
⋮
ℎ𝑘

= hash(𝑥)

∀𝑖 ∈ 1; 𝑘 ,
𝐶 ℎ𝑖 ++

∀𝑖 ∈ 1; 𝑘
𝐶 ℎ𝑖 ≥ 𝑁𝐵𝐿

Block
further

access to x

END

ACT

+1

+1

+1

hash

𝑁𝐵𝐿

Counting Bloom Filter (CBF):

20

BlockHammer

𝑃𝐹𝑃 = 1 −

𝑙<𝑁𝐵𝐿

𝑘𝑊
𝑙

1

𝑚

𝑙

1 −
1

𝑚

𝑘𝑊−𝑙
𝑘

𝑃𝐹𝑃 ∝
𝑊

𝑚
⟹ 𝑚 ∝

𝑊

𝑃𝐹𝑃
𝑘 const.

𝑊: maximum number of ACT during 𝑡𝑅𝐸𝐹𝑊;
𝑁𝐵𝐿: Rowhammer detection threshold;
𝑘: number of hash functions
𝑚: number of counters;

ACT

+1

+1

+1

hash

𝑁𝐵𝐿

22

How many counters ?

Graphene and BlockHammer: Bank-level implementation, size = 𝐾 ×𝑊

Bank-level
implementation

Size = 𝐾 ×𝑊

23

How many counters ?

Graphene and BlockHammer: Bank-level implementation, size = 𝐾 ×𝑊

Bank-level
implementation

Size = 𝐾 ×𝑊
Bank-level

implementation
Bank-level

implementation
Bank-level

implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Size = 𝐾 ×𝑊

Size = 𝐾 ×𝑊

Size = 𝐾 ×𝑊

Rank-level size : 16 × bank-level size

Size = 16 × 𝐾 × 𝑊

𝑊: maximum number of ACTs during 𝑡𝑅𝐸𝐹𝑊 at bank-level
𝑊𝑅: maximum number of ACTs during 𝑡𝑅𝐸𝐹𝑊 at rank-level = 16 ×𝑊 ?

𝑡𝑅𝐶 Same-bank ACT interval 45.8ns

𝑡𝑅𝐸𝐹𝑊 Refresh cycle duration 64ms

𝑡𝑅𝐸𝐹𝐼 Refresh interval 7.8μs

𝑡𝑅𝐹𝐶 Refresh command duration 350ns

24

Memory bandwidth at different levels

𝑡𝑅𝐸𝐹𝑊
𝑡𝑅𝐸𝐹𝐼 𝑡𝑅𝐹𝐶

ACT

𝑡𝑅𝐶

Bank level:

𝑊 =
𝑡𝑅𝐸𝐹𝑊 1 −

𝑡𝑅𝐹𝐶
𝑡𝑅𝐸𝐹𝐼

𝑡𝑅𝐶
≈ 1,33M

𝑡𝑅𝐶 Same-bank ACT interval 45.8ns

𝑡𝑅𝐸𝐹𝑊 Refresh cycle duration 64ms

𝑡𝑅𝐸𝐹𝐼 Refresh interval 7.8μs

𝑡𝑅𝐹𝐶 Refresh command duration 350ns

𝑡𝐹𝐴𝑊 Four-activate window 21.67ns

25

Memory bandwidth at different levels

𝑡𝑅𝐸𝐹𝑊
𝑡𝑅𝐸𝐹𝐼 𝑡𝑅𝐹𝐶

ACT

𝑡𝑅𝐶𝑡𝑅𝐶𝑡𝐹𝐴𝑊

𝐵0

𝐵1

𝐵2

𝐵3

𝐵4

𝐵0 − 𝐵4 are 5 banks of a single rank

Bank level:

𝑊 =
𝑡𝑅𝐸𝐹𝑊 1 −

𝑡𝑅𝐹𝐶
𝑡𝑅𝐸𝐹𝐼

𝑡𝑅𝐶
≈ 1,33M

Rank level:

𝑊𝑅 =
𝑡𝑅𝐸𝐹𝑊 1 −

𝑡𝑅𝐹𝐶
𝑡𝑅𝐸𝐹𝐼

𝑡𝐹𝐴𝑊 ÷ 4
≈ 11,3M ≠ 16 ×𝑊

26

Reduction in considered ACTs

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Total considered ACTs : 16 ×𝑊 = 21.28M

Rank-level
implementation

Total considered ACTs : 𝑊𝑅 = 11.3M

−47% ACTs

Bank-level implementation Rank-level implementation reduction

G
ra

p
h

e
n

e 162 entries
entry size: 30 bits*.
Total size: 16 × 162 × 30 bits = 𝟗. 𝟔𝟏𝐊𝐢𝐁

1377 entries
entry size: 34 bits**
Total size: 1377 × 162 × 34 bits = 𝟓. 𝟕𝟗𝐊𝐢𝐁

−𝟒𝟎%

B
lo

ck
H

am
m

e
r 2048 counters

13 bits / counter
Total size: 16 × 2048 × 13 𝑏𝑖𝑡𝑠 = 𝟓𝟐𝑲𝒊𝑩

16384 counters***
13 bits / counter
Total size: 16384 × 13 𝑏𝑖𝑡𝑠 = 𝟐𝟔𝑲𝒊𝑩 −𝟓𝟎%

27

Consequences for Graphene & BlockHammer

*: row address – 16 bits, counter – 13 bits, overflow bit – 1 bit
**: row address – 20 bits, counter – 13 bits, overflow bit – 1 bit
***: keeps the same 𝑃𝐹𝑃 as for bank-level implementation

28

Reduction in storage requirements

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Total considered ACTs : 16 ×𝑊 = 21.28M

Rank-level
implementation

Total considered ACTs : 𝑊𝑅 = 11.3M

−40 − 50% storage

Bank level Rank level reduction

16 ×𝑊 / 𝑊𝑅 21.28M 11.3M −47%

Graphene 9.61KiB 5.79KiB −40%

BlockHammer 52KiB 26KiB −50%

29

Reduction in storage requirements – DDR5

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Bank-level
implementation

Total considered ACTs : 32 ×𝑊 = 21.15M

Rank-level
implementation

Total considered ACTs : 𝑊𝑅 = 8M

−57 − 62.5% storage

Bank level Rank level reduction

32 ×𝑊 / 𝑊𝑅 21.15M 8M −62%

Graphene 9.38KiB 4.05KiB −57%

BlockHammer 52KiB 19.5KiB −62.5% (with same 𝑃𝐹𝑃 as with DDR4)

30

Does it still work as it should ?

Computer Architecture Simulator

Memory-
Corruption

module

Mitigation

France, Loïc, et al. "Implementing Rowhammer Memory Corruption in the gem5 Simulator."
32nd International Workshop on Rapid System Prototyping (RSP). IEEE, 2021.

Thank you for your attention

31

