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Rowhammer

Kim, Yoongu, et al. "Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors." ISCA, 2014
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Rowhammer objectives

Rowhammer

Privilege 
escalation

[3][4][5]

Sensitive information 
retrieval

[2]

Crash
[1]

[1] Lipp, Moritz, et al. "Nethammer: Inducing rowhammer faults through network requests." EuroS&PW, 2020.
[2] Kwong, Andrew, et al. "Rambleed: Reading bits in memory without accessing them." SP, 2020.
[3] Seaborn, Mark, and Thomas Dullien. "Exploiting the DRAM rowhammer bug to gain kernel privileges." Black Hat, 2015.
[4] Gruss, Daniel, Clémentine Maurice, and Stefan Mangard. "Rowhammer. js: A remote software-induced fault attack in javascript." DIMVA, 2016.
[5] de Ridder, Finn, et al. "SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript." USENIX Security, 2021.
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Rowhammer mitigation

[1] Kim, Yoongu, et al. "Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors." ISCA, 2014.
[2] Park, Yeonhong, et al. "Graphene: Strong yet lightweight row hammer protection." MICRO, 2020.
[3] Yağlikçi, A. Giray, et al. "Blockhammer: Preventing rowhammer at low cost by blacklisting rapidly-accessed dram rows." HPCA, 2021.
[4] Lee, Eojin, et al. "TWiCe: Time window counter based row refresh to prevent row-hammering." CAL, 2017.
[5] Konoth, Radhesh Krishnan, et al. "ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks.« OSDI, 2018.
[6] Alam, Manaar, et al. "Performance counters to rescue: A machine learning based safeguard against micro-architectural side-channel-attacks." Cryptology 
ePrint Archive (2017).

?
In hardware:
• Randomly refresh neighbors of

activated rows [1]
• Detect most activated rows with

counters [2][3][4]

Low performance cost,
Limited modularity,
Silicon area overhead

In software:
• Isolate sensitive data from unsafe

programs in the memory [5]
• Read performance counters to detect

attack signatures and stop processes
[6]

Highly modular,
High performance cost
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Rowhammer mitigation
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Hardware mitigations principle
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Counter-based hardware mitigations principle
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1 counter / row ?

⟹ 64K counters / bank (64K rows / bank)
⟹ 1M counters / rank (16 banks / rank)



Misra-Gries Algorithm:
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Graphene

ACT 𝑥

∃𝑖
𝑀 𝑖 𝑟 = 𝑥

∃𝑖
𝑀 𝑖 𝑐 = 𝑆

𝑆 = 𝑆 + 1 𝑀 𝑖 𝑟 = 𝑥 𝑀 𝑖 𝑐++

𝑀 𝑖 𝑐 = 𝑇
REF 

neighbors 
of x

END

Row Count

0x1010 5

0x2020 7

0x3030 3

Spillover 2
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Graphene

ACT 𝑥

∃𝑖
𝑀 𝑖 𝑟 = 𝑥

∃𝑖
𝑀 𝑖 𝑐 = 𝑆

𝑆 = 𝑆 + 1 𝑀 𝑖 𝑟 = 𝑥 𝑀 𝑖 𝑐++

𝑀 𝑖 𝑐 = 𝑇
REF 

neighbors 
of x

END

Row Count

0x1010 5

0x2020 7

0x3030 3

Spillover 2

Row Count

0x1010 6

0x2020 7

0x3030 3

Spillover 2

0x1010

Row Count

0x1010 6

0x2020 7

0x3030 3

Spillover 3

Row Count

0x1010 6

0x2020 7

0x5050 4

Spillover 3

0x5050



Misra-Gries Algorithm:
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Graphene

𝑁𝑒𝑛𝑡𝑟𝑦 =
𝑊

𝑇𝑅𝐻 ÷ 4

𝑊: maximum number of ACT during 𝑡𝑅𝐸𝐹𝑊; 

𝑇𝑅𝐻: Rowhammer corruption threshold.

Row Count

0x1010 5

0x2020 7

0x3030 3

Spillover 2

𝑁𝑒𝑛𝑡𝑟𝑦



Counting Bloom Filter (CBF):
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BlockHammer

ACT 𝑥

ℎ1
⋮
ℎ𝑘

= hash(𝑥)

∀𝑖 ∈ 1; 𝑘 ,
𝐶 ℎ𝑖 ++

∀𝑖 ∈ 1; 𝑘
𝐶 ℎ𝑖 ≥ 𝑁𝐵𝐿
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END
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Counting Bloom Filter (CBF):

20

BlockHammer

𝑃𝐹𝑃 = 1 − ෍

𝑙<𝑁𝐵𝐿

𝑘𝑊
𝑙

1

𝑚

𝑙

1 −
1

𝑚

𝑘𝑊−𝑙
𝑘

𝑃𝐹𝑃 ∝
𝑊

𝑚
⟹ 𝑚 ∝

𝑊

𝑃𝐹𝑃
𝑘 const.

𝑊: maximum number of ACT during 𝑡𝑅𝐸𝐹𝑊; 
𝑁𝐵𝐿: Rowhammer detection threshold;
𝑘: number of hash functions
𝑚: number of counters;

ACT

+1

+1

+1

hash

𝑁𝐵𝐿
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How many counters ?

Graphene and BlockHammer: Bank-level implementation, size = 𝐾 ×𝑊

Bank-level 
implementation

Size = 𝐾 ×𝑊
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How many counters ?

Graphene and BlockHammer: Bank-level implementation, size = 𝐾 ×𝑊

Bank-level 
implementation

Size = 𝐾 ×𝑊
Bank-level 

implementation
Bank-level 

implementation
Bank-level 

implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Size = 𝐾 ×𝑊

Size = 𝐾 ×𝑊

Size = 𝐾 ×𝑊

Rank-level size : 16 × bank-level size

Size = 16 × 𝐾 × 𝑊

𝑊: maximum number of ACTs during 𝑡𝑅𝐸𝐹𝑊 at bank-level
𝑊𝑅: maximum number of ACTs during 𝑡𝑅𝐸𝐹𝑊 at rank-level = 16 ×𝑊 ?



𝑡𝑅𝐶 Same-bank ACT interval 45.8ns

𝑡𝑅𝐸𝐹𝑊 Refresh cycle duration 64ms

𝑡𝑅𝐸𝐹𝐼 Refresh interval 7.8μs

𝑡𝑅𝐹𝐶 Refresh command duration 350ns
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Memory bandwidth at different levels

𝑡𝑅𝐸𝐹𝑊
𝑡𝑅𝐸𝐹𝐼 𝑡𝑅𝐹𝐶

ACT

𝑡𝑅𝐶

Bank level:

𝑊 =
𝑡𝑅𝐸𝐹𝑊 1 −

𝑡𝑅𝐹𝐶
𝑡𝑅𝐸𝐹𝐼

𝑡𝑅𝐶
≈ 1,33M



𝑡𝑅𝐶 Same-bank ACT interval 45.8ns

𝑡𝑅𝐸𝐹𝑊 Refresh cycle duration 64ms

𝑡𝑅𝐸𝐹𝐼 Refresh interval 7.8μs

𝑡𝑅𝐹𝐶 Refresh command duration 350ns

𝑡𝐹𝐴𝑊 Four-activate window 21.67ns
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Memory bandwidth at different levels

𝑡𝑅𝐸𝐹𝑊
𝑡𝑅𝐸𝐹𝐼 𝑡𝑅𝐹𝐶

ACT

𝑡𝑅𝐶𝑡𝑅𝐶𝑡𝐹𝐴𝑊

𝐵0

𝐵1

𝐵2

𝐵3

𝐵4

𝐵0 − 𝐵4 are 5 banks of a single rank

Bank level:

𝑊 =
𝑡𝑅𝐸𝐹𝑊 1 −

𝑡𝑅𝐹𝐶
𝑡𝑅𝐸𝐹𝐼

𝑡𝑅𝐶
≈ 1,33M

Rank level:

𝑊𝑅 =
𝑡𝑅𝐸𝐹𝑊 1 −

𝑡𝑅𝐹𝐶
𝑡𝑅𝐸𝐹𝐼

𝑡𝐹𝐴𝑊 ÷ 4
≈ 11,3M ≠ 16 ×𝑊
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Reduction in considered ACTs

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Total considered ACTs : 16 ×𝑊 = 21.28M

Rank-level 
implementation

Total considered ACTs : 𝑊𝑅 = 11.3M

−47% ACTs



Bank-level implementation Rank-level implementation reduction

G
ra

p
h

e
n

e 162 entries
entry size: 30 bits*.
Total size: 16 × 162 × 30 bits = 𝟗. 𝟔𝟏𝐊𝐢𝐁

1377 entries
entry size: 34 bits**
Total size: 1377 × 162 × 34 bits = 𝟓. 𝟕𝟗𝐊𝐢𝐁

−𝟒𝟎%

B
lo

ck
H

am
m

e
r 2048 counters

13 bits / counter
Total size: 16 × 2048 × 13 𝑏𝑖𝑡𝑠 = 𝟓𝟐𝑲𝒊𝑩

16384 counters***
13 bits / counter
Total size: 16384 × 13 𝑏𝑖𝑡𝑠 = 𝟐𝟔𝑲𝒊𝑩 −𝟓𝟎%
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Consequences for Graphene & BlockHammer

*: row address – 16 bits, counter – 13 bits, overflow bit – 1 bit
**: row address – 20 bits, counter – 13 bits, overflow bit – 1 bit
***: keeps the same 𝑃𝐹𝑃 as for bank-level implementation
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Reduction in storage requirements

Bank-level 
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implementation
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implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Total considered ACTs : 16 ×𝑊 = 21.28M

Rank-level 
implementation

Total considered ACTs : 𝑊𝑅 = 11.3M

−40 − 50% storage

Bank level Rank level reduction

16 ×𝑊 / 𝑊𝑅 21.28M 11.3M −47%

Graphene 9.61KiB 5.79KiB −40%

BlockHammer 52KiB 26KiB −50%
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Reduction in storage requirements – DDR5

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Bank-level 
implementation

Total considered ACTs : 32 ×𝑊 = 21.15M

Rank-level 
implementation

Total considered ACTs : 𝑊𝑅 = 8M

−57 − 62.5% storage

Bank level Rank level reduction

32 ×𝑊 / 𝑊𝑅 21.15M 8M −62%

Graphene 9.38KiB 4.05KiB −57%

BlockHammer 52KiB 19.5KiB −62.5% (with same 𝑃𝐹𝑃 as with DDR4)
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Does it still work as it should ?

Computer Architecture Simulator

Memory-
Corruption 

module

Mitigation

France, Loïc, et al. "Implementing Rowhammer Memory Corruption in the gem5 Simulator." 
32nd International Workshop on Rapid System Prototyping (RSP). IEEE, 2021.



Thank you for your attention
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