
*ASCA: Comparing Horizontal Side-Channel

Attacks

Vincent Grosso

May 31, 2022

CNRS/laboratoire Hubert Curien

Université Jean Monnet

Saint-Étienne



Side-channel attacks



Side-channel attacks: intuition

Online poker ≃ Black box model

Only access to cards/outputs of

the algorithm

Live poker ≃ Gray box model

Reactions/physical properties of the

device can be observed

1



Secure communication

Hello Hello2365

Side-channel
information

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

2



Side-channel attacks: divide-and-conquer strategy

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

z0 S-box y0
⊕

x

k = 0

model

m0

comparison Pr[k = 0|l ]l

16× 28 < 2128

3



Side-channel attacks: divide-and-conquer strategy

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

z1 S-box y1
⊕

x

k = 1

model

m1

comparison Pr[k = 1|l ]l

16× 28 < 2128

3



Side-channel attacks: divide-and-conquer strategy

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

z255 S-box y255
⊕

x

k = 255

model

m255

comparison Pr[k = 255|l ]l

16× 28 < 2128

3



Side-channel attacks: divide-and-conquer strategy

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

z255 S-box y255
⊕

x

k = 255

model

m255

comparison Pr[k = 255|l ]l

16× 28 < 2128

3



Information used

0 2 4 6

0

2

4

6

plaintext p

p
⊕
k

k = 0
k = 1

Figure: Before S-box, ρ = 0.904

0 2 4 6

0

2

4

6

plaintext p

p
⊕
k

k = 0
k = 1

Figure: After S-box, ρ = 0.571

Horizontal attacks: use both, use as many information as we can More

information ⇒ less traces

4



Information used

0 2 4 6

0

2

4

6

plaintext p

p
⊕
k

k = 0
k = 1

Figure: Before S-box, ρ = 0.904

0 2 4 6

0

2

4

6

plaintext p

p
⊕
k

k = 0
k = 1

Figure: After S-box, ρ = 0.571

Horizontal attacks: use both, use as many information as we can More

information ⇒ less traces

4



Diffusion issue

Divide and conquer strategy with block cipher with strong diffusion

MixColumns

Few points of the trace can be exploited or large number of bit of the key

need to be brute forced

5



Side-channel exploitable information

A
d
d
ro
u
n
d
ke
y

S
u
b
B
yt
e

S
h
if
tR

ow
s

M
ix
C
ol
u
m
n
s

R
ou

n
d
2

R
ou

n
d
3

O
th
er

ro
u
n
d
s

F
in
al

ro
u
n
d

▶ Standard DPA, [Crypto 98] (8 bits)

▶ Multi target DPA, [Asiacrypt 2014] (32 bits, computationally

intensive)

▶ Combination with cryptanalysis

• Collision attacks [FSE 2003]

• *ASCA (ASCA, TASCA, SASCA) [CHES 2009,Asiacrypt 2014]

6



*ASCA



General description

Use some computational power to reduce data complexity of an attack

solver/ opti-

mizer

Problem de-

scription

Side-channel

information

description

Solution

7



Algebraic side-channel attacks (ASCA)

Based on sat solver

▶ Problem description: Represent the cryptographic algorithm with

conjunctive normal form (bit level)

(∨ · · · ∨) ∧ (∨ · · · ∨) ∧ · · · ∧ (∨ · · · ∨)

▶ Side-channel information description: Some more CNFs (only exact

information)

▶ Solver: your favorite SAT solver (cryptominisat -xor clauses-):

probabilistic program that outputs UNSAT or SAT with an

instantiation of variables such that all clauses are verified

Any false clause will lead to UNSAT (with high probability)

8



Algebraic side-channel attacks (ASCA)

Based on sat solver

▶ Problem description: Represent the cryptographic algorithm with

conjunctive normal form (bit level)

(∨ · · · ∨) ∧ (∨ · · · ∨) ∧ · · · ∧ (∨ · · · ∨)

▶ Side-channel information description: Some more CNFs (only exact

information)

▶ Solver: your favorite SAT solver (cryptominisat -xor clauses-):

probabilistic program that outputs UNSAT or SAT with an

instantiation of variables such that all clauses are verified

Any false clause will lead to UNSAT (with high probability)

8



Tolerant Algebraic side-channel attacks (TASCA)

Based on Satisfiability modulo theories (SMT) solver

▶ Problem description: Represent the cryptographic algorithm with

different equations that will be interpreted according to the adapted

theory

• BitVectors, arrays, integers, real numbers

▶ Side-channel information description: convert Bitvector to integers

(or opposite) and add equation

▶ Solver: your favorite SMT solver: probabilistic program that outputs

UNSAT or SAT with an instantiation of variables such that all

clauses are verified

Super heavy

9



Tolerant Algebraic side-channel attacks (TASCA)

Based on Satisfiability modulo theories (SMT) solver

▶ Problem description: Represent the cryptographic algorithm with

different equations that will be interpreted according to the adapted

theory

• BitVectors, arrays, integers, real numbers

▶ Side-channel information description: convert Bitvector to integers

(or opposite) and add equation

▶ Solver: your favorite SMT solver: probabilistic program that outputs

UNSAT or SAT with an instantiation of variables such that all

clauses are verified

Super heavy

9



Soft Analytical Side-Channel Attacks (SASCA)

Based on LDPC decoding

▶ Problem description: Represent the cryptographic algorithm as a

bipartite graph

• One set of nodes for operations

• One set of nodes for intermediate values

▶ Side-channel information description: leakage operation nodes

▶ Solver: run belief propagation algorithm (propagate probabilities of

each value of each intermediate variable)

10



Recap: *ASCA

ASCA TASCA SASCA

representation

speed and mem.

efficiency

noise resistance

rational

11



Large register issue



Limitations

▶ ASCA: How to efficiently encode HW information?

▶ TASCA: How to not blow-up memory requirement during solving

part ?

▶ SASCA: How to update messages efficiently ?

12



Why?

We do not consider information on small word, but about a full register

(32-bit vs 8-bit)

▶ Asymmetric crypto

▶ permutation based crypto

▶ Bitsliced countermeasures

13



Solution: counter

Clauses added : (O(wh))
Extra variable : (O(wh))

14



Toy example

1: for r ← 0 to n−k
w do

2: sr = 0

3: for r ← 0 to (n − k) do

4: b = 0

5: for c ← 0 to n
z do

6: bxor = H[r ,c]andec
7: t = w

2

8: while t > 0 do

9: bxor = b ≫ t

10: t = t
2

11: b = band1

12: s∗⌊ r
w ⌋ =s∗⌊ r

w ⌋orb ≪ (r mod w)

13: return s∗

15



Results

8-bit 16-bit 32-bit

time 1 ×2 ×16
memory 1 ≃ 1 ≃ 1

16



Recap: *ASCA

ASCA TASCA SASCA

representation

speed and mem.

efficiency

noise resistance

rational

Larger register

17



Thanks for your attention

18


	Side-channel attacks
	*ASCA
	Large register issue

