

EXAMPLE 1 LABORATOIRE HUBERT CURIEN

An evaluation procedure for comparing clock jitter measurement methods

Arturo Mollinedo Garay Florent Bernard Viktor Fischer Patrick Haddad Ugo Mureddu

Brief reminder – clock jitter

Evaluation of a TRNG

eRO-TRNG

[1] Baudet, M., D. Lubicz, J. Micolod, and A. Tassiaux. "On the Security of Oscillator-Based Random Number Generators," 24(2):398–425. Journal of Cryptology, 2011.

The final goal

The need for true random numbers

eRO-TRNGs use jittery digital signals

Embedded and continuous measurements are required for the entropy source characterization and for its performance evaluation.

Thoroughly evaluate jitter measurement methods

The evaluation procedure

STEP 1 – Analytical model

The coherent sampling method

11

[2] Valtchanov, B., V. Fischer, and A. Aubert. "A Coherent Sampling Based Method for Estimating the Jitter Used as
Entropy Source for True Random Number Generators." In *International Conference on Sampling Theory and* Applications - SAMPTA 2009, 2009.

On the analytical model

The precision of the method

- Jitter accumulates with time
- Precision of the method depends on Δ .
- We control Δ on simulations.

STEP 2 – Simulations

The coherent sampling method

- Analyse $err_{\%} = f_{\sigma_{inp}}(\Delta)$
- Lower limit \rightarrow flicker noise influence [3]
- Upper limit \rightarrow acceptance limit on the error.

[3] Haddad, P., Y. Teglia, F. Bernard, and V. Fischer. "On the Assumption of Mutual Independence of Jitter Realizations in P-TRNG Stochastic Models." In *Design, Automation & Test in Europe Conference & Exhibition - DATE 2014*, 1–6. IEEE, 2014.

STEP 3 – Study the results

The coherent sampling method

The interval can be found for any μ_1

If Δ:

$$\Delta_{i,j} = \frac{|\mu_i - \mu_j|}{\mu_j} \ 100\%; i \neq j$$

$$\mu_j \rightarrow \text{sampled clock} \ ; \ \mu_i \rightarrow \text{sampling clock}$$

• Then:

 $0.3\%\mu_1 < \Delta < 1.4\%\mu_1$

STEP 4 – Hardware experiment

The coherent sampling method

- * 16 ROs \rightarrow 240 pairs of ROs
- 23.7% had a suitable Δ .
- The critical dependence on ∆ makes the method difficult to implement in hardware

Application of the procedure

The counter method

20

The variance of the counter values is used to calculate the jitter after the accumulation time $k\mu_0$ [4]

- The precision depends on k
- *k* chosen by the designer
- No hardware constraint

[4] Valtchanov, B., A. Aubert, F. Bernard, and V. Fischer. "Modeling and Observing the Jitter in Ring Oscillators
Implemented in FPGAs." In Proceedings of the 11th IEEE Workshop on Design & Diagnostics of Electronic Circuits
& Systems - DDECS 2008, 158–63, 2008.

The counter method

- Acceptable error for k > 200,000
- Flicker noise is not negligible for k > 300 [3]
- The method does not distinguish between the thermal noise and the flicker noise components
- The counter method is not applicable for thermal noise clock jitter measurement.

[3] Haddad, P., Y. Teglia, F. Bernard, and V. Fischer. "On the Assumption of Mutual Independence of Jitter Realizations in P-TRNG Stochastic Models." In *Design, Automation & Test in Europe Conference & Exhibition - DATE 2014*, 1–6. IEEE, 2014.

The differential delay line method

The time of arrival of two edges coming from two ROs are measured with two delay lines [5]

[5] Yang, B., Rozic, V., M. Grujic, N. Mentens, and I. Verbauwhede. "On-Chip Jitter Measurement for True Random Number Generators." In Asian Hardware Oriented Security and Trust Symposium - AsianHOST 2017, 91–96, 2017.

The differential delay line method

Simulations

- The delays of the buffers are given by the hardware.
- Variations in manufacturing → not identical delays.

 $d_{i,j} \sim \mathcal{N}(\mu_d, \sigma_d^2)$

Results

 $\mu_d < 18ps$; $\sigma_d < 16.5ps$

Hardware experiment

• Results

$$\mu_d = 4.84 ps$$
; $\sigma_d = 4.26 ps$

- At least 1.5 clock periods \rightarrow 1,000 buffers ; f_0 of 400MHz.
- Delicate trade-off \rightarrow cannot be met in the FPGA.

Method testing the autocorrelation of distant samples

The method is based on the autocorrelation of coherent samples distant in time of a short accumulation time [6]

- Coherent sampling based
- No constraints on Δ .
- ${}^{\mu_0}/{}_{\mu_1} \approx {}^{p}/{}_{q}$; p,q small integers.
- Another pattern distant in time of $M\mu_0 \rightarrow$ accumulated jitter $M\mu_0$.

[6] Fischer, V., and D. Lubicz. "Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG." In *Cryptographic Hardware and Embedded Systems - CHES 2014*, edited by Lejla Batina and Matthew Robshaw, 8731:527–43, 2014.

Method testing the autocorrelation of distant samples

- Group A \rightarrow 16 ROs, 9 buffers
- Group $B \rightarrow 16$ ROs, 10 buffers
- 255 pairs of ROs \rightarrow sampling from group A ; sampled group B
- 92% resulted in an acceptable error

Results and conclusion

Error

Results summary

- The method testing autocorrelation of distant samples is ahead of the others
- The rest of them should either:
 - Include the influence of flicker noise in their original model
 - Avoid the influence of flicker noise
 - Relax hardware constraints

Conclusion

Successfully identified the limits of each method

The models are simplistic compared to reality \rightarrow inaccurate simulated measurements, inaccurate measurements in hardware

Accurate simulated measurements DO NOT mean accurate measurements in hardware

Our evaluation procedure is necessary but not sufficient

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

Bibliography

[1] Baudet, M., D. Lubicz, J. Micolod, and A. Tassiaux. "On the Security of Oscillator-Based Random Number Generators," 24(2):398–425. Journal of Cryptology, 2011

[2] Valtchanov, B., V. Fischer, and A. Aubert. "A Coherent Sampling Based Method for Estimating the Jitter Used as Entropy Source for True Random Number Generators." In *International Conference on Sampling Theory and Applications - SAMPTA 2009*, 2009.

[3] Haddad, P., Y. Teglia, F. Bernard, and V. Fischer. "On the Assumption of Mutual Independence of Jitter Realizations in P-TRNG Stochastic Models." In *Design, Automation & Test in Europe Conference & Exhibition - DATE 2014*, 1–6. IEEE, 2014.

[4] Valtchanov, B., A. Aubert, F. Bernard, and V. Fischer. "Modeling and Observing the Jitter in Ring Oscillators Implemented in FPGAs." In Proceedings of the 11th IEEE Workshop on Design & Diagnostics of Electronic Circuits & Systems - DDECS 2008, 158–63, 2008.

[5] Yang, B., Rozic, V., M. Grujic, N. Mentens, and I. Verbauwhede. "On-Chip Jitter Measurement for True Random Number Generators." In Asian Hardware Oriented Security and Trust Symposium - AsianHOST 2017, 91–96, 2017.

[6] Fischer, V., and D. Lubicz. "Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG." In *Cryptographic Hardware and Embedded Systems - CHES 2014*, edited by Lejla Batina and Matthew Robshaw, 8731:527–43, 2014.

